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Abstract Skeletons can be viewed as a compact shape representation in that each shape can be completely

reconstructed from its skeleton. However, the usefulness of a skeletal representation is strongly limited by its

instability. Skeletons suffer from contour noise in that small contour deformation may lead to large structural

changes in the skeleton. A large number of skeleton computation and skeleton pruning approaches has been

proposed to address this issue. Our approach differs fundamentally in the fact that we cast skeleton pruning

as a trade-off between skeleton simplicity and shape reconstruction error. An ideal skeleton of a given shape

should be the skeleton with a simplest possible structure that provides a best possible reconstruction of a given

shape. To quantify this trade-off, we propose that the skeleton simplicity corresponds to model simplicity in the

Bayesian framework, and the shape reconstruction accuracy is expressed as goodness of fit to the data. We also

provide a simple algorithm to approximate the maximum of the Bayesian posterior probability which defines an

order for iteratively removing the end branches to obtain the pruned skeleton. Presented experimental results

obtained without any parameter tuning clearly demonstrate that the resulting skeletons are stable to boundary

deformations and intra class shape variability.
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1 Introduction

The skeleton or medial axis (MA), is a compact abstraction of visual shape, which has been widely

used for object representation and recognition [1]. Blum’s medial axis transform (MAT) has been very

influential in computer vision. It computes the centers and radii of maximal disks lying within the object,

which touches the boundary with at least two points [2]. There have been many methods proposed

for skeleton extraction. However, skeleton extraction is usually troubled by a well-known issue: the

skeleton is unstable with respect to small boundary perturbations [3]. Due to the skeleton’s sensitivity

to boundary deformation and noise, researchers tried to design some stable skeletonization approaches

[1,4–9] or smart pruning techniques [10–14]. The progress in skeleton extraction not only significantly

improved the performance of shape recognition [15–17] but also made it possible to utilize skeletons
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in object detection and contour grouping in natural images [18–20]. This demonstrates that it is very

important to obtain the skeleton with a clean structure that can represent the visual parts of an object

[11].

However, existing approaches to skeletonization or skeleton pruning require adjusting thresholds or

other parameters for each shape or shape class separately, which usually is a tedious and manual process.

Therefore, skeleton based approaches have never been used on large datasets such as the MPEG-7 Shape

Dataset [21].

We overcome this problem by casting skeleton pruning as a trade-off between two properties of the

skeleton: simplicity and shape reconstruction error. The trade-off is quantified by Bayesian probability,

and a single parameter is taken as the weight factor for these two properties which is kept constant in

all our experiments. An example of a skeleton obtained by the proposed approach is provided in Figure

1(b), where the red regions represent the reconstruction error when the shape is reconstructed from the

proposed skeleton. All the obtained skeletons are stable in the presence of intra class shape deformations

as well as boundary noise as demonstrated by our experimental results.

The proposed approach begins with a connected skeleton composed of all MA points. The MA points

are then pruned by iteratively removing skeleton end branches according to a certain order. A sequence

of skeletons are generated under this order and we choose the skeleton corresponding to the optimal

solution of the target function defined in Section 5 as the final output.

As pointed out by [10], the skeleton of a single connected shape that is useful for skeleton-based

recognition should have the following properties:

1. it should preserve the topological information of the original object;

2. the position of the skeleton should be accurate;

3. it should be stable under small deformations;

4. it should contain the centers of maximal disks, which can be used for reconstruction of original

object;

5. it should be invariant under Euclidean transformations such as rotations and translations;

6. it should represent significant visual parts of objects.

The proposed skeletons satisfy all these properties and are computed automatically without any pa-

rameter tuning.

2 Related work

Skeletonizaton approaches can be broadly classified into four categories: 1) thinning/peeling algorithms

[22–26], 2) discrete domain algorithms based on the Voronoi diagram [27–29], 3) algorithms based on

distance transform [30–34], and 4) algorithms based on mathematical morphology [35–38].

All the obtained skeletons are subjected to the skeleton’s sensitivity to boundary deformations and

many of them also include pruning methods along with the skeletonization. The earlier works [39–42]

on skeleton-based shape matching cannot often be used in shape recognition for a large dataset due

to the instability of skeletons and the limitations of skeletonization techniques. Recent progresses in

skeletonization or skeleton pruning have brought a significant improvement for skeleton-based shape

recognition. Aslan et al. [15] extract the disconnected skeletons in a coarse level, which are very good

fit for articulated shapes. Bai and Latecki [16] approximately transfer the graph matching process into

sequence matching by using skeleton paths between skeleton endpoints as a representation, and their

skeleton graphs are built based on the pruned skeletons obtained by [10]. Macrini et al. [17] posit a

strategy to build a new kind of skeleton graph named Bone Graph by preprocessing the Shock Graph,

which outperforms the Shock Graphs in the shape recognition task [42]. These approaches heavily depend

on the quality of obtained skeletons as the object representation.

As an essential part of skeletonization algorithms, skeleton pruning algorithms usually appear in a

variety of application-dependent formulations [43]. There are mainly two ways of pruning methods:

(1) based on significance measures assigned to skeleton points [28,31,43], and (2) based on boundary

smoothing before extracting the skeletons [43,44]. However, boundary smoothing may lead to disruptive
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effects. In particular, curvature flow boundary smoothing may cause the position of skeletons shift

and has difficulty in distinguishing noise from low frequency shape information on the boundary [43].

A different kind of smoothing is proposed in [45]. A great progress has been made in the type (1)

of pruning approaches that define a significance measure for skeleton points and remove points whose

significance are low. Ref. [43] gives a complete analysis and compares such pruning methods. To the

common significance measures of skeleton points belong propagation velocity, maximal thickness, radius

function, axis arc length, the length of the boundary unfolded. Ogniewicz et al. [28] present a few

significance measures for pruning hairy Voronoi skeletons without disconnecting the skeletons. Siddiqi et

al. combine a flux measurement with the thinning process to extract a robust and accurate connected

skeleton [5]. However, correcting the error in calculating the flux is limited by the pixel resolution and

is also proportional to the curvature of the boundary evolution front. This makes the exact location of

endpoints difficult. Torsello et al. [7] overcome this problem by taking into account variations of density

due to boundary curvature and eliminating the curvature contribution to the error.

Ref. [10] presents a promising skeleton pruning method by dividing the contour into separate segments

with the vertices from DCE (discrete curve evolution). Since DCE does not change the topology, the

pruned skeleton has the topology of the input skeleton. The idea of using contour partitioning [10] is

later extended in skeletonization of wireless sensor networks [46]. Krinidis and Chatzis [47] localize the

medial points iteratively starting from a boundary point set based on a physics-based deformable model.

Recently, Refs. [13,14] introduce an interesting idea for skeleton punning that can prune a group of

shapes from the same class in the same pruning process. The merit of their method is that pruning

can benefit the shape information from different shapes and find the common structure. However, their

method requires that the shapes in a group should be in the same orientation without serious changes of

articulations.

3 Basic skeleton concepts

Before introducing the proposed approach, we give some definitions. According to Blum’s definition of

the medial axis (MA) [2], the MA or a skeleton S of a set D is the locus of the centers of maximal disks.

A maximal disk of D is a closed disk contained in D that is interiorly tangent to the boundary ∂D and

that is not contained in any other disk in D. Each maximal disc must be tangent to the boundary in at

least two different points. As illustrated in Figure 1(c), the exterior solid curve is the boundary of the

set D, and the interior solid curve is the MA. Blue dash circles denotes the maximal discs, whose centers

are soft dots. With every skeleton point s ∈ S we also store the radius r(s) of its maximal disk.

In this paper, we use term medial axis (MA) to denote the set M of all centers of maximal disks of a

given set D while the skeleton S to denote any subset of M .

By Theorem 8.2 in [48], the skeleton S is a geometric graph, which means that S can be decomposed

into a finite number of connected arcs, called skeleton branches, composed of points of degree two, and

the branches meet at skeleton joints (or bifurcation points) that are points of degree three or higher.

The skeleton point having only one adjacent point is an endpoint (the skeleton endpoint); the skeleton

point having more than two adjacent points is a junction point. If a skeleton point is not an endpoint or

a junction point, it is called a connection point. (For skeletons in digital images, we assume the curves

of the skeleton are one-pixel wide.)

A skeleton end branch is part of the skeleton between a skeleton endpoint and the closest junction point.

Let li(i = 1, 2, . . . , N) be the endpoints of a skeleton S. For each endpoint li, f(li) denotes the nearest

junction point. Formally, an end branch E(li, f(li)) is the shortest skeleton path between li and f(li).

For example, in Figure 2(a), arc from point 1 to point a is a skeleton end branch: E(1, f(1)) = E(1, a).

The arc from point a to point b is not an end branch; it is a skeleton (inner) branch. Note that point a

is the nearest junction point of two endpoints (1 and 7).

We define end path P (l, o) as the shortest skeleton path between an endpoint l and a skeleton point o

named seed point. We choose as seed point o a skeleton point whose radius of the corresponding maximal

disk is maximal.
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(a) (b) (c)

Figure 1 (a) An input shape and its medial axis; (b) the skeleton obtained by the proposed method. Its reconstruction

error is marked with the red regions; (c) the medial axis and the maximal disks.
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Figure 2 (a) The endpoints (red) and junction points (green) on a bird’s skeleton. The reconstruction (c) of the Medial

Axis (b) is equal to the original shape in (d).

In this paper we relax the Blum’s definition of the maximal disk. While Blum’s definition of maximal

disks is restricted only to medial axis points, we extend it to all interior points of the shape D. For each

point s in the interior of D, a closed ball B(s, r) centered at s with radius r is a maximal disk of D if

B(s, r) ⊆ D and ∂B(s, r)∩ ∂D 6= ∅, where ∂A yields the boundary of the set A. In particular, we do not

require that a maximal disc must be tangent to the boundary in at least two different points. We use

Blum’s definition of the maximal disk to define the medial axis. Otherwise, we use the relaxed definition

in the rest of this paper.

We define a shape space D as the set of all compact planar sets D such that the boundary ∂D is

composed of a finite number of simple closed polygonal curves. Sometimes we call such a D a shape.

We define a set of skeletons S as the set of sets S such that S is a finite union of open polygonal curves

that intersect only at their vertices. This implies that every junction point must be a vertex, but we

may have additional vertices to allow the skeleton to bend. We observe that we also relax a definition

of the skeleton in that a given skeleton S is not required to be linked to any shape D. Of course, in the

remainder of this paper we will relate the skeletons to the shapes, but a skeleton S is a finite union of

1D polygonal open curves.

Let a skeleton S be a subset of a shape D. Let r(s) denote the radius of the maximal disk B(s, r(s))

centered at a point s ∈ S. The reconstruction of D from skeleton S is denoted by R(S)

R(S) =
⋃

s∈S

B(s, r(s)), (1)

If a skeleton S is not a subset of D, then R(S) = ∅. The quality of the reconstruction will allow us to

relate the skeletons to shapes in the next section. A special case is illustrated in Figure 2. If S is the

MA of D, then we can exactly reconstruct the original shape D from S, i.e., R(S) = D. However, MA

of a digital shape in images usually contains spurious branches due to boundary noise and deformation.

Our goal is to find a skeleton S that can be seen as a simplification of MA by keeping only skeleton

branches that are relevant for the shape representation, while at the same time S should contain enough

information to provide a reasonable reconstruction of the shape like the bird skeleton in Figure 2(a).

4 Trade-off quantification

For a given shape D, the ideal skeleton S should: (i) contain no spurious skeleton branches; (ii) provide

the best reconstruction of the given shape. In practice, there is a trade-off between (i) and (ii): we
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desire to seek a skeleton that has as simple structure as possible, whilst the reconstruction error of the

skeleton to the given shape is as small as possible. We introduce below intuitive formulas used in Bayesian

framework to quantify the trade-off. Feldman and Singh [49] have provided cognitive motivation rooted

in human visual perception that the most likely skeleton for a given shape can be obtained by maximizing

p(S|D). By Bayes’ rule, this probability density function (pdf) can be transformed to

p(S|D) =
p(D|S)p(S)

p(D)
∝ p(D|S)p(S). (2)

Hence the most probable skeleton S should explain the shape D in the most plausible way under a

generative model given by the conditional pdf p(D|S) and at the same time should be the most likely

skeleton according to the prior p(S). The prior p(S) represents the skeleton simplicity. The Bayesian

framework allows us for a natural and intuitive combination of likelihood and prior. Consequently, Eq.

(2) seeks the simplest skeleton that can best explain a given shape D.

For a fixed shapeD ∈ D, we can drop the denominator in (2). It is equal to p(D) =
∫

p(D|U)P (U)d(U)

and stays constant for any S in the numerator, where U varies over the set of all possible skeletons U ∈ S.

While Feldman and Singh [49] provide a general framework, they do not provide any complete algorithm

for skeleton computation according to (2). They leave many computational problems open, because their

formulas for prior and conditional pdfs lead to challenging combinatorial issues. In this paper we propose

to use exponential family distributions to define both factors in (2).

A key feature of the definition of a skeleton is that the shape can be reconstructed from it [2]. We

propose to measure how well a given skeleton S explains shape D as the area difference between D and

the shape R(S) reconstructed from S, i.e. Λ(D−R(S)), where Λ(·) denotes the area measured by pixels.

We observe that the area of the set difference is very robust to boundary deformations. To be specific,

we define






p(D|S) ∝ exp

(

− α
Λ(D −R(S))

Λ(D)

)

, S ⊂ D,

p(D|S) = 0, S * D,

(3)

where α is a normalization factor that will be defined in Section 6. Thus, a given skeleton is more likely,

the better is the reconstruction R(S) measured by area difference.

In particular, if S = M , where M is the medial axis of D, we have Λ(D−R(M)) = 0, since D = R(M).

However, when D is given by a binary image, we need to modify M to get an ideal S, since M usually

contains many spurious branches and may be deformed due to contour noise and digitization artifacts.

The prior pdf p(S) over the skeletons of D is intended to measure the skeleton simplicity. Intuitively,

it makes sense that the shorter skeleton S, the simpler is the structure of S. Therefore, we propose

p(S) = exp(− log(Γ (S) + 1)), (4)

where Γ (·) denotes the normalized curve length and adding the constant one assures that log(Γ (S)+1) >

0. We use log function to scale the measure of curve length, because as it is shown by the popular shape

descriptor shape context [50], scaling the distance with a log factor adds stability to shape representation.

In our framework, it is also possible to make the simplicity of a skeleton S dependent on the number of

junction point and on the amount of its bending. However, as we will see in our experimental results,

expressing the simplicity as the function of length only is sufficient for obtaining high quality skeletons.

By plugging (3) and (4) to (2), we obtain our target function

p(S|D) ∝ p(D|S)p(S) ∝ exp

(

− α
Λ(D −R(S))

Λ(D)

)

exp(− log(Γ (S) + 1)). (5)

Thus, a skeleton S is more likely, the better it explains the shape D, which is measured by normalized

area difference, and the simpler S is, which is measured by normalized log length of S. Consequently,

by maximizing (5) we obtain the simplest skeleton S that can best explain shape D. The skeleton

simplicity corresponds to model simplicity in Bayesian framework, and the shape reconstruction accuracy

corresponds to goodness of fit to the data.
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5 Pruning process

In this section, we introduce a simple algorithm to approximate the maximum of (5) which defines an

order for iteratively removing the end branches to obtain the pruned skeleton.

Maximizing (5) is equivalent to minimizing

− log p(S|D) ∝ α
Λ(D −R(S))

Λ(D)
+ log(Γ (S) + 1), (6)

We denote λ(S|D) = − log p(S|D), the first summand by AR for area ratio and the second by LR for

length ratio. Thus, we re-express (6) as

λ(S|D) ∝ αAR(D|S) + LR(S), (7)

where AR(D|S) > 0 and LR(S) > 0. α is the weight factor between goodness of fit of R(S) to D measured

by AR(D|S) and model simplicity measured by LR(S). Our goal is to find the minimum of (7):

S∗ = argminλ(S|D). (8)

However, searching for the optimal solution of (8) is a computationally challenging problem, since there

is a huge number of potential skeletons S that need to be examined. We know neither how many vertices

the skeleton S should have nor their positions in the shape D. Moreover, the minimization result depends

on the normalization factor α. For example, if α = 0, then a single point skeleton of length zero is a

solution, and the solution is not unique. In fact any point s ∈ D yields the optimal value λ(S|D) = 0 for

S = {s}. Hence, we also face the problem of the uniqueness of the solution. Consequently, Eq. (8) is an

ill-posed problem.

In the following we will introduce additional constraints on the skeleton that will allow us to introduce

a well-posed problem that seems to provide a reasonable refinement of (8). First we assume α > 0

(the actual value will be determined later), and observe that the larger α is, the more important is the

reconstruction accuracy in comparison to the skeleton length. Second, as we stated above if S = M ,

where M is the medial axis of D, AR(D|S) = 0. However, this leads to a noisy skeleton with many

spurious branches. Our key observation is as follows: for every skeleton U not contained in M , there

exists at least one skeleton S ⊆ M with a better reconstruction accuracy and shorter or equal length.

The following theorem makes this statement more precise:

Theorem 1. Let M be the MA of shape D. For every skeleton U 6⊂ M , there exists a skeleton S ⊆ M

such that Γ (S) 6 Γ (U) and AR(D|S) 6 AR(D|U). Consequently, λ(S|D) 6 λ(U |D).

Proof. The theorem follows from the fact that we can project any point in u ∈ U \M to the closest point

p(u) ∈ M . We observe that r(u) 6 r(p(u)) by the definition of MA as composed of the centres of maximal

disks. Since r(u) 6 r(p(u)), we obtain
⋃

u∈U\M B(p(u), r(p(u))) has better or equal reconstruction

accuracy to
⋃

u∈U\M B(u, r(u)).

Let S = p(U). This means that p(u) = u if u ∈ M and p(u) 6= u if u ∈ U \M . Therefore, S has better

or equal reconstruction accuracy than U .

Since p is a function, S cannot have more points (pixels) than U . Hence Γ (S) 6 Γ (U), which completes

the proof.

This theorem motivates our constraint to restrict the search for the skeleton S∗ to S ⊆ M . We can

further constrain the solutions of (8) to skeletons with desirable topological and geometric properties. It

is important to require S to have the same topology as D. Given that M has the same topology as D,

which is guaranteed in the continuous domain, and is true for many discrete medial axis algorithms, e.g.,

[32], it is sufficient to ensure that S has the same topology as M in order to obtain that S has the same

topology as D. We ensure that S has the same topology as M by removing only skeleton end branches

from M . We also require the skeleton end branches to terminate on the boundary of D. The above

discussion motivates the following three constraints

• S ⊆ M .
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• S has the same topology as M .

• End branches of S terminate on the boundary of D.

Due to these constraints, solving (8) can be performed by removing skeleton end branches from M .

Therefore, our goal is to find a sequence of end branches

E0, . . . , En,

whose removal minimizes (6). We denote the corresponding sequence of obtained skeletons by

S(0) = M and S(i+1) = S(i) − Ei.

We derive now a recursive process that allows us to find such a sequence. A key step is the selection of

the end branch Ei for obtaining S(i+1) from S(i). Given a skeleton S(i), we denote all its end branches

by

E
(i)
j (j = 1, 2, . . . ,m(i)).

We define the weight w
(i)
j for each E

(i)
j as

w
(i)
j = α

Λ(D −R(S(i) − E
(i)
j ))

Λ(D)
+ log(Γ (S(i) − E

(i)
j ) + 1). (9)

The end branch with the smallest weight

wi = min{w
(i)
j |j = 1, 2, . . . ,m(i)} (10)

is taken as the branch Ei to be removed, and we set S(i+1) = S(i) − Ei. In other words, S(i+1) is

obtained from S(i) by removing a branch Ei with the smallest weight. We continue this process until

all branches are removed from M . In fact, in our pruning process, every step is greedy, and we remove

the end branch which makes the value of the target function (7) decrease fastest. Our algorithm defines

a pruning order which generates a sequence of skeletons {S(i)}. Finally, we choose the skeleton Ŝ from

them which satisfies

Ŝ = arg min
S∈{S(i)}

λ(S|D). (11)

Thus, instead solving the ill-posed problem in (8), we propose to solve the well-posed problem stated in

(11). In Figure 3, we show the curves of our target function (7) related to the sequences of skeletons

{S(i)}. The skeletons corresponding to the optimal solution of (11) are shown below the curves.

The pseudo code of the proposed skeleton pruning algorithm is given in the Figure 4.

6 The choice of the normalization factor α

The normalization factor α is defined as

α = β log

(

Γ (M)

̟(M)

)

, (12)

where ̟(M) denotes the average length of end paths of M emanating from the seed point o and β is

a constant. Γ (M)
̟(M) represents the prior of the shape complexity. Intuitively, the lager Γ (M)

̟(M) is, the more

skeleton branches are contained in M , and the more complex the shape is. The so defined α balances the

skeleton simplicity and the shape reconstruction error between shapes with different complexities. In all

experiments β is set to 9 which is obtained after a trial and error testing. As our experimental results

demonstrate that it is possible to keep β for all shapes independent of shape complexity and the amount

of boundary noise.
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Figure 3 The plots in the first and second column show the curves of LR(x) in red and of AR(x) in blue as functions of

the skeleton length x, respectively. The plots in the third column show our target function (7). Original medial axes and

skeletons corresponding to the optimal solution of function (11) are shown below each triplet of plots.

Procedure skeletonpruning(Input M , Output Ŝ)

01. Initialize S = M , S = {S}.

02. While The number of the end branches in S is larger than 2

03. Let L be the set of end points of S and {E(L, o)} be the set of end branches of S.

04. For all l ∈ L

05. Compute the weights wl of end branch E(l, f(l)) by (9).

06. End

07. Choose the minimum weight wmin = argminl∈L wl.

08. Remove the end branch Emin with the weight wmin: S = S − Emin

09. S = S ∪ S.

10. End

11. Ŝ = argminS∈S αAR(S) + LR(S)

Figure 4 The pseudo-code for the proposed algorithm.

7 Experimental results

In this section, we evaluate the performance of the proposed method in three parts: 1) stability to shape

variances and boundary noise, 2) quality of skeletons measured by reconstruction error and 3) analysis

and comparison to other recent methods.

We stress that we use a fixed parameter β=9 in all the experiments. All the original skeletons were

generated by the algorithm in [32]. It computes skeletons by utilizing the distance transform. The

skeletons obtained by [32] can be approximately considered as the medial axes M for each input shape

D. In particular, M has the same topology as D and all end branches of M terminate on the contour

of D.

7.1 Stability of the proposed method

To demonstrate that our method is stable to shape variance, we apply our method to two well-known

shape datasets: Kimia’s dataset [40] and Tari’s dataset [6], which have also been very popular in

skeleton-based shape recognition. Kimia’s dataset [40] includes 216 shapes with 18 classes (12 shapes

per class), which is a subset of MPEG-7 Shape dataset [21]. There is significant boundary variance

among the shapes from the same classes in Kimia’s dataset. We show all the results of Kimia’s dataset in
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Figure 5 Our skeletons for all shapes in Kimia’s dataset [40].

Figure 5, and we can observe that the obtained skeletons are not only clean but also stable for each of

the 18 shape classes.

We also show our results on Tari’s dataset [6] in Figure 6, which consists of 56 shapes with 14 classes

(4 shapes per class). In this dataset, the shapes from the same class may differ by serious articulations,

and some shapes are with obvious boundary noise. We still use the same setting: β = 9.0 for this dataset,

and the obtained skeletons demonstrate that our method is stable to articulation changes.

Furthermore, Figure 7 demonstrates that our skeletons are robust to geometric transformations, such

as rotation, scaling, and affine transformations. We use the same setting as before: β = 9.0.

Our skeleton is robust to boundary noise as demonstrated in Figure 8. We artificially inserted boundary

noise, which is either Gaussian or uniform, to the images in the first column.

7.2 Quantitative evaluation of skeleton quality

The skeleton of high quality should represent significant visual parts of objects. To evaluate this property

of pruned skeletons, we compute the reconstruction error ratio (RER) defined by the AR function. The

quality of the skeleton is not solely determined by RER, since the reconstruction error of the original

medial axis is zero. Therefore, we also compute the skeleton simplicity (SS) defined by the LR function.

We report the statistics of RER and SS for our skeletons and skeletons in Bai et al. [10] on Kimia’s

dataset [40] and Tari’s dataset [6] in Table 1. We observe that our method yields simpler skeletons (lower

SS values) on both datasets. On Tari’s dataset, we also have better RER. Our RER on Kimia’s dataset

is slightly higher than that of [10], which is needed in order to obtain simpler skeletons. Bai’s skeletons

are computed by setting a fix threshold at T = 1. We also demonstrate several pruned skeletons of the

shapes from MPEG-7 dataset in Figure 9. The RER values of these skeletons as well as of the skeletons

in Table 1 are all very small which shows the high quality of the obtained skeletons. This shows that our
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Figure 6 Our skeletons for all shapes in the Tari’s dataset [6].

Figure 7 Our skeletons are stable to affine transforma-

tions.

Figure 8 Our skeletons on shapes with noisy bound-

aries. (a) Initial images; (b),(c) images with Gaussian

boundary noise of (0,1) and (0, 1.5); (d) images with

uniform noise (1.2) inserted to original boundaries.

Table 1 The mean and the standard deviation of the reconstruction error ratio and skeleton simplicity on Kimia’s dataset

[40] and Tari’s dataset [6]

Ours Ref. [10]

Mean Std. dev. Mean Std. dev.

Kimia
RER 0.0087 0.0056 0.0068 0.0063

SS 1.4665 0.2262 1.6452 0.1923

Tari
RER 0.0106 0.0097 0.0193 0.0709

SS 1.5866 0.1838 1.7071 0.1194

method yields skeletons with a simple graph structure with only minimal loss in reconstruction quality,

which is usually less than one percent of the shape area.
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(0.0016) (0.0072) (0.0102) (0.0081)

(0.0047) (0.0155) (0.0030)

(0.0080)

(0.0259) (0.0361) (0.0259)
(0.0181)

Figure 9 Skeletons obtained by proposed method. The shapes are green and the reconstruction errors are marked red.

The value of the reconstruction error ratio is given in the brackets below each shape.

Figure 10 (a) Skeletons obtained by the proposed algorithm, and (b) skeletons obtained by [47].

7.3 Analysis and comparison

In the past, almost all approaches to skeleton pruning require manual parameter tuning for each shape

or shape class. However, recent work [47] has tried to obtain stable skeletons with a fixed parameter

setting. We compare our method with current state-of-the-art methods [10,47,51].

Ref. [47] used a fixed parameter to extract stable skeletons of a small dataset shown in Figure 10(b).

For comparison, we test our algorithm on the same data set with the a fixed parameter β = 9.0. Our

skeletons are shown in Figure 10(a). Both methods yield visually appealing skeletons. However, the

skeletons of the method in [47] are not symmetric to the boundary, e.g., see the skeleton branch at the

horse’s head in Figure 10(b), and are sensitive to boundary noise, e.g., the skeleton of the human wiggles

a lot due to the boundary noise. In contrast, our algorithm starts with the Blum’s medial axis, and

consequently, is symmetric to the boundary. In several shape matching method [10], the sequence of radii

of the maximal disks at the points on the skeleton path is used as a feature to discriminate shapes. If the

skeleton is not symmetric to the boundary, the radii of the skeleton points are inaccurate, which could

influence the matching result. Therefore, skeletons that are symmetric to the boundary are strongly

preferred.

In order to demonstrate the accuracy of the skeleton quantitatively, we use the error measure of

skeletons proposed in [47] in our evaluation. We apply the skeletonization approach to a simple shape
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Figure 11 Skeletons of rectangles. (a) the original rectangle; (b) the rectangle with Gaussian noise (0, 1.0) on its

boundary; (c) with Gaussian noise (0, 1.5); (d) with uniform noise (1.0); (e) with uniform noise (1.2); (f) with uniform

noise (1.5).

Table 2 Skeletonization error for rectangles presented in Figure 9

Obtained by Obtained by Obtained by Obtained by

method in [47] method in [10] method in [51] our method

Average error pixel 0.31 0.28 0.25 0.24

Table 3 Retrieval results on Kimia’s dataset with Path Similarity [16] based on the skeletons pruned by two different

methods

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Pruned skeletons obtained by [10] 216 216 215 216 212 210 210 205 204 189 173

Proposed method 216 216 215 216 213 210 210 207 205 191 178

(a rectangular region) with known skeleton (Figure 11(a)). Then, we compare the skeletonization results

of this shape for a variable amount of boundary noise (noisy skeletons)(Figure 11(b)–(f)). For fairness,

we test the same rectangles with the noise of the same intensity as in [47]. The error between a noisy

skeleton S and the ground-truth skeleton G is computed as the mean square error between their points:

Err(S,G) =
1

N

N
∑

i=1

√

(Sx(i)−Gx(i))
2
+ (Sy(i)−Gx(i))

2
, (13)

where N is the number of skeleton points in S, (Sx(i), Sy(i)) are the coordinates of the ith skeleton point

in S and (Gx(i), Gy(i)) is the closest point in G to the point Sx(i), Sy(i). The average error of the five

types of noisy skeletons compared to the ground-truth skeleton in Figure 11 is shown in Table 2. This

evaluation demonstrates that our skeletons are more accurate and more robust to noise than the methods

in [10,47,51].

We give another comparison to the method in [10] by using a quantitative way to evaluate the quality

of the pruned skeletons by measuring the performance of shape retrieval. We use a recent skeleton

matching method [16] to perform shape retrieval based on the skeletons extracted by [10] and the proposed

algorithm, respectively. For the method in [10], we use a fixed stop threshold T = 1 to compute all the

skeletons of the shapes in Kimia dataset. The retrieval results based on the two different skeleton pruning

methods are shown in Table 3. For each query shape, we check whether the 11 closest matches are in the

same category as the query. In Table 3, the retrieval result is summarized as the number of 11 closest

matches that fall into the correct category. Therefore, the best possible number for each column is 216.

We observe that the retrieval results based on the skeletons obtained by the proposed method are better,

which demonstrates a superior quality of the obtained skeletons.
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7.4 Experimental details

Our pruning algorithm has high time cost, since it computes the reconstruction in every iterative step. Its

average time for obtaining a pruned skeleton from a 512×512 image is about 7 minutes on a standard PC.

Our method is much slower than Bai’s method [10] whose time cost is only about 28 seconds under the

same conditions. Therefore, to obtain the experimental results presented in Subsections 7.1 and 7.3, we

used the following strategy to increase speed: First, we pruned the skeletons with the pruning algorithm

in [10] to a coarse level; then, we continued with the proposed algorithm. In this way, the average time

cost has been reduced to about 34 seconds, and the obtained skeletons are virtually indistinguishable.

8 Conclusion

In this paper, we establish a Bayesian framework for computing skeletons with a trade-off between

reconstruction accuracy and skeleton simplicity. Such skeletons are obtained by iteratively removing the

skeleton end branches with the smallest weight related to the trade-off quantification. Our algorithm

requires only one parameter that balances the reconstruction accuracy and the skeleton simplicity. The

parameter was fixed in all our experiments, which was remarkable, since we applied our algorithm to

a large number of shapes. The results on three different datasets, Kimia’s dataset [40], Tari’s dataset

[6], and Krinidis’ dataset [47], demonstrate that our method is very stable to shape deformation and

boundary noise. Consequently, it can be widely used in various applications, including skeleton-based

shape recognition on large datasets.
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28 Ogniewicz R, Kübler O. Hierarchic voronoi skeletons. Pattern Recogn, 1995, 28: 343–359

29 Mayya N, Rajan V. Voronoi diagrams of polygons: a framework for shape representation. In: CVPR. Seattle: IEEE,

1994. 638–643

30 Arcelli C, di Baja G S. Euclidean skeleton via center-of-maximal-disc extraction. Image Vision Comput, 1993, 11:

163–173

31 Malandain G, Fernandez-Vidal S. Euclidean skeletons. Image Vision Comput, 1998, 16: 317–327

32 Choi W P, Lam K M, Siu W C. Extraction of the euclidean skeleton based on a connectivity criterion. Pattern Recogn,

2003, 36: 721–729

33 Kimmel R, Shaked D, Kiryati N, et al. Skeletonization via distance maps and level sets. Comput Vis Image Und,

1995, 3: 382–391

34 Ge Y, Fitzpatrick J. On the generation of skeletons from discrete euclidean distance maps. IEEE Trans Pattern Anal,

1996, 18: 1055–1066

35 Meyer F. Skeletons and perceptual graphs. Signal Process, 1989, 16: 335–363

36 Maragos P, Schafer R W. Morphological skeleton representation and coding of binary images. IEEE Trans Acoust

Speech Signal Proc, 1986, 34: 1228–1244

37 Goutsias J, Schonfeld D. Morphological representation of discrete and binary images. IEEE Trans Pattern Anal, 1991,

39: 1369–1379

38 Kresch R, Malah D. Morphological reduction of skeleton redundancy. Signal Process, 1994, 38: 143–151

39 Zhu S, Yuille A. Forms: a flexible object recognition and modeling system. Int J Comput Vision, 1996, 20: 187–212

40 Sebastian T, Klein P, Kimia B. Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal, 2004,

26: 550–571

41 Liu T, Geiger D, Kohn R. Representation and self-similarity of shapes. In: ICCV. Bombay: IEEE, 1998. 1129–1135

42 Siddiqi K, Shokoufandeh A, Dickinson S, et al. Shock graphs and shape matching. Int J Comput Vis, 1999, 35: 13–32

43 Shaked D, Bruckstein A. Pruning medial axes. Comput Vis Image Und, 1998, 69: 156–169

44 Mokhtarian F, Mackworth A. A theory of multiscale, curvature-based shape representation for planar curves. IEEE

Trans Pattern Anal, 1992, 14: 789–805

45 Gold C, Thibault D, Liu Z. Map generalization by skeleton retraction. In: ICA Workshop on Map Generalization.

Ottawa: ICA, 1999

46 Jiang H B, Liu W P, Wang D, et al. Case: connectivity-based skeleton extraction in wireless sensor network. In:

INFOCOM. Rio de Janeiro: IEEE, 2009. 2916–2920

47 Krinidis S, Chatzis V. A skeleton family generator via physics-based deformable models. IEEE Trans Image Process,

2009, 18: 1–11

48 Choi H, Choi S, Moon H. Mathematical theory of medial axis transform. Pac J Math, 1997, 181: 57–88

49 Feldman J, Singh M. Bayesian estimation of the shape skeleton. Proc Natl Acad Sci U. S. A., 2006, 103: 18,014–18,019

50 Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern

Anal, 2002, 24: 509–522

51 Shen W, Bai X, Hu R, et al. Skeleton growing and pruning with bending potential ratio. Pattern Recogn, 2011, 44:

196–209


