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a b s t r a c t

We propose a novel significance measure for skeleton pruning, called bending potential ratio (BPR), in

which the decision regarding whether a skeletal branch should be pruned or not is based on the context

of the boundary segment that corresponds to the branch. By considering this contextual information,

we can better evaluate the contribution of the boundary segment to the overall shape, which generally

depends on its particular location within the whole contour (i.e., a segment may be considered to be

insignificant in one place while it may be considered as a feature elsewhere). The BPR is a measure of

the significance of contour segments in such context, and depicts the bending potential of a contour

segment. Unlike other significance measures that only contain local shape information, the BPR

evaluates both local and global shape information. Thus, it is insensitive to local boundary deformation.

In addition, we also present a scheme for skeleton growing, which integrates pruning based on the BPR

measurement. Our experiments demonstrate that the skeletons obtained by the proposed algorithm are

medially placed and connected. We also demonstrate that shapes reconstructed from these skeletons

are very close to the original shapes. Moreover, the BPR measure yields a natural multi-scale skeletal

representation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Skeleton is a very useful shape descriptor, since it contains
shape features of the original object. Thus, skeleton is essential for
shape representation and analysis in many application areas such
as content-based image retrieval systems, character recognition
systems, circuit board inspection systems, and analysis of
biomedical images [2]. Skeleton, which is also called medial axis,
was first defined by Blum [1] with a grassfire model.

In the past decades, various skeleton extraction methods have
been proposed. Generally, they can be coarsely classified into five
types: the thinning algorithms [3,4,29], the discrete domain
algorithms based on the Voronoi diagrams [5,6,8], the algorithms
based on distance transform [7,11,12,30,31,32,33], iterative
shrinking of the object contour [14,16,22], and the algorithms
based on mathematical morphology [9]. Those methods have a
common drawback, which is their high sensitivity to the
boundary noise: small errors in the object boundary can
drastically change the derived skeleton [10]. Consequently these
methods may often yield spurious skeleton branches, which
negatively influences the performance of object recognition based
ll rights reserved.
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on skeletal structure. Hence, it is necessary to prune the spurious
skeleton branches.

Many approaches have been developed for skeleton pruning.
Some of them smooth the boundary before the computation of
skeletal points, which aim to remove unwanted boundary noise
and discretization artifacts [36,39,46]. However, boundary
smoothing may change the boundary location, and consequently,
the skeleton position may shift, which is due to the difficulty in
distinguishing noise from low frequency shape information on
boundaries [20]. Others try to assign a significance measure to
each skeleton point or skeleton branch, and then the skeleton
points/branches are pruned when their significance values are
less than a given threshold. A few important methods based on
significance measure need to be mentioned: Ogniewicz and
Kübler [15] presented several length based significance measures
for a given skeleton point, such as the length of the chord between
two generating points (the points of the maximal disk centered at
the skeleton point, which are tangent to the boundary) and the
length of the shortest boundary segment between two generating
points. Shaked and Bruckstein [13] summarized such methods,
and they suggest choosing the maximal erosion thickness as the
significance measure. Couprie and Zrour [17] proposed another
significance measure named bisector angle, which is the angle
between the lines connecting the skeleton point and its generat-
ing points. These significance measures suffer from similar
drawbacks. First, some redundant skeleton branches may not be
removed completely, which constrains the shape matching based
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on skeletal structure as illustrated in Fig. 1b. Second, the pruning
results are not multi-scale. The concept of multi-scale skeleton is
outlined in [23], which appeals well to human intuition in that on
a coarse scale the skeleton represents the significant visual parts
of the shape, whereas, on a fine scale, the skeleton contains more
small details such as the tip of the trunk in Fig. 1. Third,
sometimes the pruning results are inconsistent with our intuition
as illustrated in Fig. 2. In Fig. 2a and b, q1 and q2 are the generating
points of p; observe that the contour segment between q1 and q2,
the forelimb of the mouse, gives rise to no skeleton branches since
both the length of chord q1q2 and the angle +q1pq2 are small.
Obviously, the pruning results are inconsistent with human
perception, because the forelimb is a significant part of the whole
body and should generate skeleton branches as shown in Fig. 2c.

Recently, Ward and Hamarneh [18] gave an unconventional
pruning method named groupwise pruning, assuming that shapes
in the same class have common shape information encoded into
their skeletons. They utilize the similarity of the skeletons of the
objects in the same class to determine the significance of skeleton
branches by group information. Although their method exhibits
excellent pruning outcomes, the assumption of this method may
not be general for many cases, because the shapes from the same
class can differ significantly due to in-class variation, distortion or
non-rigid transformation [19]. In addition, the computational
complexity of this method is much higher than any other
methods. Bai et al. [20] proposed an effective and elegant pruning
method, which can be integrated into a skeleton extracting
process. The main idea is partitioning the object’s contour into
segments by discrete curve evolution (DCE) [21], followed by
eliminating the skeleton points whose generating points are on
the same segment. The method of Bai et al. compares very
favorably to all of the above methods, and the pruned skeletons
have been successfully applied to skeleton graph matching [27]
and object recognition in natural images [45]. However, the
obtained skeletons may contain some redundant points and some
unimportant branches as shown in Fig. 3.
Fig. 1. (a) The skeleton of an elephant obtained by the method in [12]; (b) the prun

(c) the skeleton generated by the proposed method; (d) the hand-labeled skeleton.

Fig. 2. (a) A pruned skeleton obtained based on the significance measure of the length o

of the bisector angle [17]. (c) The skeleton pruned by the proposed significance measu
To summarize, all existing methods are deficient in some
respect. The major drawback of the pruned skeletons is that they
may contain many spurious skeleton branches. For the example in
Fig. 1, we view the hand-labeled skeleton in (d) as the reference
skeleton. Any skeleton branch that is not included in the skeleton
(d) is regarded as a spurious branch. The skeleton in (a) has about
400 spurious branches, the one in (b) 87 spurious branches, and
the one in (c) only one spurious branch (located in the tip of the
trunk).

This paper deals with the problems mentioned above. It
presents a novel significance measure, called bending potential

ratio (BPR), which can be used to remove spurious skeleton
branches. According to Blum’s definition of skeleton [1], a
skeleton is generated from the boundary and each skeleton
branch corresponds to a contour segment. Our intuition is that
only contour segments that are significant in the context of the
whole contour should give rise to skeleton branches. Conversely,
the skeleton branches originating from insignificant contour
segments are spurious and should be pruned. It is difficult to
make correct decision based only on the shape’s outline regarding
whether a skeletal segment is significant or not. Therefore, we
propose that the context also includes the location of the segment
in the whole contour, since the contribution of the same segment
to the overall shape may be different when the location is
different in the whole contour. A segment may be considered to
be insignificant in one place while it may be considered as a
feature in another place, as shown in Fig. 6. BPR is a measure of
the significance of contour segments in such context, which
depicts the bending potential of a contour segment. Unlike other
significance measures that only contain local shape information,
BPR integrates both local and global shape information. Thus, it is
insensitive to local boundary deformation. Moreover, the pruning
results based on BPR are multi-scale and can represent visual
parts of the object. In addition, we also present a scheme for
skeleton growing, which integrates pruning based on BPR
measurement. During skeleton growing, spurious skeleton
ing result of (a) using the significance measure of the length of the chord [15];

f the chord [15]. (b) A pruned skeleton obtained based on the significance measure

re.



Fig. 3. First row: The skeletons of two sea snake shapes obtained by the method in [20]. The boundary points pointed to by arrows generate unimportant skeleton branches

and some parts of the skeletons contain redundant points, such as the green points in the red circle area (showed zoomed). Second row: The skeletons of the same shapes

obtained by the proposed method.
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branches are eliminated and the connectivity of the obtained
skeleton is guaranteed by the skeleton growing process.

The rest of this paper is organized as follows. In Section 2, we
recall some basic notation for binary images. In Section 3, we
define the BPR significance measure. In Section 4, a scheme for
skeleton growing based on BPR is presented. Experimental results
and analysis are presented in Section 5. Finally, the conclusions
are given in Section 6.

2. Basic notation

For simplicity of presentation, we assume that the boundary
contour of a 2D object is a simple closed curve C in R2. The
bounded set F inside contour C represents the region of the object.
All our definitions and statements apply also to a planar set F

whose boundary contour is composed of a finite number of simple
closed curves, i.e., F may have a finite number of holes, since if a
skeleton point originated from two different contour curves it will
never be removed from the skeleton. Therefore, any skeleton
point that is removed originates from a single contour curve, and
consequently, we focus on the case of a single contour curve C.

Given a point p, which we state in the image domain, where
the term point refers to a pixel, we define the function of distance
transform k as

kðpÞ ¼
minvAC dðp,vÞ, pAF,

0, p=2F,

(
ð1Þ

where d( , ) is the Euclidean distance measure.
For a point pAF, r(p) denotes a set of nearest contour points to

p. Obviously,

dðp,rðpÞÞ ¼ kðpÞ: ð2Þ

With r(p) we have the following definition of ruling points R(p):

Definition 1. We define ruling points R(p) as a set of points on the

contour C that are the closest to a point p or its eight-neighborhood

inside the contour, i.e.,

RðpÞ ¼ R8ðpÞ [ rðpÞ ¼ frðqÞ9qAN8ðpÞg [ rðpÞ, ð3Þ

where N8(p) are the eight neighbors of point p inside the contour and

R8(p)¼{r(q)9qAN8(p)}.
Obviously, if p is a skeleton point,

nðRðpÞÞZ2, ð4Þ

where function n( ) denotes the number of the elements in a set.
In accord with our statement at the beginning of this section,

the concept of a ruling point easily extends to a set F whose
boundary is a union of simple closed curves C1, y, Ck. Then a
point p is a ruling point if it is a ruling point with respect to any C

in {C1, y, Ck}. All other concepts and properties presented in this
paper extend in the same way.
3. Bending potential ratio

3.1. Definition of bending potential ratio

Consider two points q1, q2AR(p) (n(R(p))Z2) shown in Fig. 4,
the shortest contour segment between q1 and q2 is denoted as
C(q1, q2). Since the contour segment is a digital set consisting of
pixels, we measure the length of the contour segment by the total
distance between each pair of neighboring pixels, and according
to the Euclidean metric, the distance between two neighboring
pixels displaced horizontally/vertically is 1 and diagonally is

ffiffiffi
2
p

.
If q1 and q2 divide the contour into two segments of equal length,
arbitrarily one of them is denoted as C(q1, q2).

Definition 2. For a contour segment C(q1, q2), let l(q1, q2) denote the

arc length of C(q1, q2). We construct an isosceles triangle with base

q1q2 and with a vertex gAR2 such that

dðg,q1Þ ¼ dðg,q2Þ ¼
1
2lðq1,q2Þ: ð5Þ

There are actually two different points satisfying formula (5),
which are marked with g1 and g2 in an example shown in Fig. 5c,
and the arbitrary one can be chosen as the point g, e.g., g1 in
Fig. 5c. We call the so defined point g a ghost point of C(q1, q2).

Usually, the ghost point g does not lie on the contour, unless
the contour segment is a symmetrical polygonal line as shown in
Fig. 5b. If g lies on the contour as shown in Fig. 5a, then obviously,
l(g, q1)4d(g, q1), l(g, q2)4d(g, q2), l(q1, q2)4d(g, q1)+d(g, q2), and
g would not satisfy formula (5).
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Definition 3. Let point p lie inside the contour C with n(R(p))Z2,

and let q1, q2 be two points in R(p). Let point g be the ghost point of

the contour segment C(q1, q2). With reference to Fig. 4, let hg be the

height of triangle q1gq2 and let hp be the height of triangle q1pq2. The

bending potential ratio (BPR) e(p, q1, q2) is defined as

eðp,q1,q2Þ ¼
hg

hp
: ð6Þ

3.2. Discussion of bending potential ratio

As shown in Fig. 4, since Dq1gq2 is an isosceles triangle, it is not
difficult to obtain that

hg ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðq1,q2Þ�d2ðq1,q2Þ

q
: ð7Þ

Observe that hg provides local information of the contour
segment C(q1, q2), since the arc length l(q1, q2) and the chord
length d(q1, q2) are its own properties. For a fixed distance
d(q1, q2), the larger the l(q1, q2) is, the more bendable the C(q1, q2)
is. Hence, hg reflects the bending potential of the contour segment
C(q1, q2). A contour segment with a sharp bend contains a point
with locally maximal curvature, and there is a connection
between the positive curvature maxima of the shape boundary
and the skeleton in the sense that each curvature maximum gives
rise to a skeletal branch [24]. Consequently, hg can be considered
as a measurement for estimating the significance of a contour
segment.

By trigonometry, we have

1
2 hpdðq1,q2Þ ¼

1
2dðp,q1Þdðp,q2Þsinð+q1pq2Þ ð8Þ
g

q1

q1

q2

C
C

g

Fig. 5. The location

g

q1

q2

p

h g

h p

C

F

Fig. 4. The definition of ghost point and BPR.
and we have

hp ¼
dðp,q1Þdðp,q2Þsinð+q1pq2Þ

dðq1,q2Þ
: ð9Þ

If p is a skeleton point, d(p, q1) is approximately equal to
d(p, q2); hence we obtain

hp ¼ dðp,q1Þcos
+q1pq2

2

� �
: ð10Þ

Formula (10) expresses that hp contains not only the informa-
tion of the bisector angle [17] but also the width of the object.
Whether a contour segment is significant or not is determined by
not only its own information, e.g. the arc length, but also the
context where it is located. The same contour segment may more
likely be considered to be insignificant if it locates on a broad part
of shape, while if it locates on a narrow part of shape, it may be
prone to be considered as a feature. Hence, the ratio of hg and hp,
the bending potential ratio integrates both local and global shape
information. It can be used to determine whether a contour
segment generates a skeleton branch. Particularly, hp is 0 if the
tangents in q1 and q2 are parallel. In this case, the BPR value is
infinite, which indicates that p is a skeleton point. Fig. 6 contains
an illustrative example showing the effect of BPR in pruning
skeletons. The peaks in Fig. 6 are the same; however, they have
different shape contributions to the objects. The peak in Fig. 6a is
more likely to be a negligible detail on the boundary, and so the
branch originating from it should be pruned, while the peak with
the same size in Fig. 6b is more likely to be an important shape
feature, and so it should generate a skeleton branch. The peak in
Fig. 6c is closer to the right angle than the peak in Fig. 6a, and
consequently, it gives rise to a skeleton branch, since it replaces
the right angle as the feature of the shape. As shown in Fig. 6, the
skeletons obtained by our method can distinguish between a
negligible branch as in (a) and significant branches as in (b, c). In
the differential geometry, the bending of a planar curve at a given
point is measured by its curvature, where the curvature is a
strictly local property and measures the behavior of the curve at a
given point. In contrast, the proposed BPR is a global property; in
particular, it depends on the placement of a contour segment
within the whole contour as demonstrated in Fig. 6.
3.3. Relation of BPR to other significance measures

We note a formal connection between BPR and other
significance measures, such as the length of chord [15], the
length of shortest boundary segment [15], and the bisector angle
[17]. Linking our significance measure to others is helpful to
understand the advantage of BPR.
q2

g1

q1 q2

g2
C

of ghost point.



Fig. 6. Samples of rectangles with the same peak added to their boundary. First row: The skeletons obtained by proposed method. Second row: The skeletons of the same

shapes pruned by the significance measure of the length of the shortest boundary segment proposed in [15]. pi (i¼1, 2, 3 in (a), (b), (c), respectively) is the point under

consideration, qi1, qi2AR(pi), and the gi is the ghost point. The peaks all give rise to skeleton branches based on the significance measure in [15] (set l(qi1, qi2)Z10), since

they are the same. Based on our significance measure (set hgi/hpiZ0.8), the pruning results are different.

Fig. 7. The skeletons of a camel foot. The skeleton in (a) was generated by the approach in [12]. The boundary points marked with color dots are the ruling points of

skeleton points marked with dots of the same color. (b) The skeleton generated by Criterion 1 contains some redundant points, as the green part. (c) The skeleton obtained

by applying the method in [3] to the skeleton in (b).
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By formulae (6), (7), and (10), we obtain

eðp,q1,q2Þ ¼
hg

hp
¼
ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðq1,q2Þ�d2ðq1,q2Þ

p
dðq1,q2Þ=2tanð+q1pq2=2Þ

¼ tan
+q1pq2

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðq1,q2Þ

d2ðq1,q2Þ
�1

s
:

ð11Þ

Formula (11) expresses the connection between BPR and
the significance measures: the length of the chord d(q1, q2),
the length of the shortest boundary segment l(q1, q2), and the
bisector angle +q1pq2. A proper integration of the three
measures is one of the main contributions of the proposed method.
It is reasonable to integrate the other three measures in this way,
since the larger the +q1pq2 is, the more possible p is a skeleton
point, and the tangent function reinforces this trend, particularly
when +q1pq2¼p (the maximum value), the BPR value is infinite.
Moreover, the ratio of the other two l(q1, q2)/d(q1, q2) has the
property that the local maxima of it often correspond to limb-like
parts [28], and limb-like parts always give rise to skeleton branches.
Therefore, it is more accurate to use the product of these measures
to determine whether a contour segment should generate a skeleton
branch. Using any one of the other three measures may lead to
incorrect results as shown in Fig. 2b. While +q1pq2 is small, since
l(q1, q2)/d(q1, q2) corresponds to a long forelimb in Fig. 2, the value of
l(q1, q2)/d(q1, q2) is pretty large. Therefore, the value of BPR is still
large enough to indicate that the contour segment C(q1, q2) should
generate skeleton.
4. A scheme for pruned skeleton growing

Now, we propose a scheme for skeleton growing recursively by
adding points that satisfy a criterion based on BPR.
4.1. The criterion for pruning the spurious branches

A criterion introduced in [12], which is based on the ruling
points, is used to determine whether the given point is a skeleton
point. It is the reason why we call them ruling points. We briefly
review the criterion here in the image domain: For a given point p

inside contour C with n(R(p))Z2, if there exists q1Ar(p) and
q2AR8(p) that satisfies

d2ðp,q1Þ�d2ðp,q2Þrmaxðabsðx1�x2Þ, absðy1�y2ÞÞ, ð12Þ

the point p is considered to be a skeleton point, where (x1, y1) and
(x2, y2) are the coordinates of q1 and q2, respectively. Based on
formula (12), the skeleton is medially placed in the silhouette
region and connected [12], but the skeleton contains too many
spurious skeleton branches, e.g., the colored branches shown in
Fig. 7a. Note that the spurious skeleton branches marked with
color are generated from insignificant contour segments of the
same color. The proposed significance measure BRP solves this
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problem. We modify the criterion in [12] as follows:

Criterion 1. Point p belongs to the pruned skeleton if there exist
q1Ar(p) and q2AR8(p) that satisfy

d2ðp,q1Þ�d2ðp,q2Þrmaxðabsðx1�x2Þ,absðy1�y2ÞÞ,

eðp,q1,q2Þ4t,

(
ð13Þ

where t is a given threshold, and (x1, y1) and (x2, y2) are the
coordinates of q1 and q2, respectively.

Obviously, Criterion 1 is a necessary condition to determine
whether a shape point is a skeletal point, and based on the proposed
significance measure, just the pairs of contour points connecting
significant contour segments are used to determine whether the
corresponding points are skeleton points. Hence, the spurious
skeleton branches are not produced by the modified criterion.
4.2. Growing a pruned skeleton

Based on the above criterion, we give the scheme for growing a
pruned connected skeleton. For a 2D object, the bounded set F
Fig. 8. Selected pruning results on MPEG-7 shape data set; the
inside contour C represents the region of the object, and Sk is the
skeleton of the object.

Procedure SkeletonGrow (Input F, Output Sk)
threshold va
01.
 Choose the point pmAF, such that k(pm) is maximum.

02.
 If pm satisfies Criterion 1

03.
 add (pm, k(pm)) to Sk and push pm to a stack S
04.
 End

05.
 While S not empty

06.
 p’pop(S)

07.
 For 8 neighbors x of p that satisfy Criterion 1

08.
 Add (x, k(x)) to Sk, push x to S
09.
 End

10.
 End
The skeleton based on the proposed scheme is shown in
Fig. 7b, the spurious skeleton branches have been pruned. Some
part of the obtained skeleton may contain redundant points, like
the green part shown in Fig. 7b. In many shape matching methods
based on skeletal structure, sampling some points from skeletons
or detecting critical points (end points and junction points) is
lues t set in experiment are shown in brackets.
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needed, such as the method in [27,43,44]. Removing the
redundant points from skeletons will benefit shape matching
and analysis. To achieve this, any topology preserving removal
operations [32] can be applied to the pruned skeleton. We used a
morphological thinning method proposed in [3] and the result is
shown in Fig. 7c.

4.3. Computational complexity

The time complexity of our approach is described in this
section. In order to calculate BPR, we need to parameterize the
boundary by the arc length, which has complexity O(m), where m

is the number of boundary points. For a point p to be checked
whether it should be added to the skeleton, the number of its
ruling points is n. Checking whether point p satisfies Criterion 1
has complexity O(n) [12]. Thus, the total time complexity of our
approach is O(nN+m), where N is the number of pixels inside the
boundary. Actually, in real application, n is often equal to a
smaller value, like 3 or 4, and m is much less than N; thus our
algorithm is fast. On a 1.61 GHz AMD Sempron computer, it takes
about 7 s in average to extract the pruned skeleton from a
512�512 image.
5. Experimental results

First, we show the stability of the proposed approach in
relation to shape deformations and boundary noise. Then, we
Fig. 9. Selected pruning results on MPEG-7 shape data set. The
present comparison to state-of-the-art approaches. Next, the
discussion about the effect of the threshold value t is given. After
that, we evaluate the quality of pruned skeletons. Finally, we
demonstrate that the obtained skeleton can be useful in shape
matching.
5.1. Stability

Some selected results on shapes from MPEG-7 Core Experi-
ment CE-Shape-1 data set [26] are shown in Figs. 8 and 9. There
are 70 groups of objects in MPEG-7 data set, some of them having
complex shapes and boundary noise insertions. Note that like the
experiments in [35], for different shapes of the same class, we use
the same threshold, which is very important for automatic
recognition with skeletons. In Fig. 8, several objects from the
same class are put together, although their shape differs
significantly, the obtained pruned skeletons have similar struc-
ture, e.g., the skeletons of the camels.

The pruned skeletons of the objects whose shape is quite
complex such as like beetles and octopuses still match the hand-
labeled skeletons, which proves the robustness of the proposed
approach. In the last row in Fig. 8, two of cup shapes contain a
hole and the proposed approach is also applicable to these shapes.

In Fig. 9, the objects are presented as pairs, where the second
one is obtained by the significant contour deformation and
distortion of the first one. The skeletons extracted from the
shapes noisy shapes are still clean and have similar geometrical
structure to the skeletons extracted from the shapes of smooth
threshold values t set in experiment are shown in brackets.



Fig. 10. Skeletons generated by the proposed approach (t¼1.0) on shapes

obtained by geometrical transformations: (a) original shape; (b) 2.0 scaling factor;

(c) 0.5 scaling factor; (d) 901 rotation; (e) nonuniform scaling with 0.5 and 0.75

scaling factors on X and Y axes, respectively; (f) nonuniform scaling with 0.75 and

1.0 scaling factor on X and Y axes, respectively, and 351 rotation.
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boundary, which indicates that the proposed approach is stable in
the presence of boundary deformations.

Furthermore, the proposed approach is applied to shapes after
geometrical transformations, like rotations and scaling, in Fig. 10.
Observe that the obtained skeletons are stable.
5.2. Comparison to other approaches

Fig. 11 provides a comparison of our approach (the second
column) to the method in [14] (the first column). The third
column illustrates the skeletons obtained by the method in [12],
which can be approximately considered as the medial axis
defined by Blum [1]. The skeleton points obtained by our method
correspond all to the centers of maximal inscribed discs, since
they are a subset of the skeletons of the third column, whereas the
method in [14] is a skeletonization algorithm based on a type of
boundary propagation that does not enforce this property. Clearly,
the skeletons in Fig. 11a and b are not positioned medially in the
silhouette region, in particular, the parts of the second hump and
the pull ring. In contrast, as shown in Fig. 11c and d, all of our
skeleton points are exactly symmetrical to the shape boundary. In
order to quantitatively demonstrate that our skeletons are more
accurate than the skeletons in [14], we compute the error
measure of skeletons proposed in [14]. We briefly describe the
measure below. We apply our skeletonization approach to a
simple shape (a rectangular region) with known skeleton
(Fig. 12a). Then, we compare the skeletonization results for this
shape for a variable amount of boundary noise (Fig. 12b–f). For
fairness, we test the same rectangles with the same noise as in
[14]. The error measure of a noisy skeleton S to the zero-noise
skeleton D is defined as

ErrðS,DÞ ¼
1

N

XN

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSxðiÞ�DxðiÞÞ

2
þðSyðiÞ�DyðiÞÞ

2
q

, ð14Þ

where N is the number of skeleton points in S, [Sx(i), Sy(i)] are the
coordinates of the ith skeleton point in S and [Dx(i), Dy(i)] is the
closest point in D to the point [Sx(i), Sy(i)]. The average error
measure of the five types of noisy skeletons to the first one in
Fig. 12 is shown in Table 1. This experimental result serves to
illustrate that our skeletons are more accurate and more robust to
noise than the approach by Krinidis and Chatzis [14] and
approaches in [15,17,20].

We also compare our result with the pruning result by DCE
[20]. A comparison is shown in Fig. 3, we give another comparison
in Fig. 13. Since the skeletons obtained by the method in [20] are
multi-scale, we give the results with a different number of
vertices selected by DCE. The parameter N is the number of
vertices in the simplified boundary polygon; thus, NZ3. Gen-
erally, it is adequate to assign a larger N to the shape with more
vertices, such as ‘‘octopus’’, and to assign a small N to the shape
with fewer vertexes, such as ‘‘apple’’. The results by DCE are
shown in the first and second columns in Fig. 13. Our results are
shown in the third column. The skeletons in the first and second
columns contain some unimportant branches, such as the one
located on the rightmost tentacle of the octopus. The main part of
the apple in Fig. 13 is similar to a ball, so the skeleton points
should be positioned at the nearby region of the center of the ball
as is the case for our result, but not be grown to the boundary as
the results by the method in [20].

To compare the proposed significance measure, BPR, to the
approaches proposed in [15,17], we extract several skeletons by
the method proposed in [12] integrated with pruning based on
these significance measures. Figs. 1 and 2 indicate that BPR is
much more favorable than the significance measure of the length
of the chord [15] and the significance measure of the bisector
angle [17]. Fig. 14 depicts the comparison between the signifi-
cance measure of the length of the shortest boundary segment
[15] (the first three) and ours (the last one). Observe that, based
on the significance measure of the length of the shortest boundary
segment, when the threshold value is small, the extracted
skeleton contains many spurious branches, when the threshold
value increases, the spurious branches are shorter or disappear;
however the vital skeleton branches that represent significant
visual parts of objects, such as the leaves of the apple, disappear
too. The result in Fig. 14d indicates that our significance measure
is superior.

Our method is very adequate for extracting skeletons from
circular shapes. If a shape is similar to a circle, the skeleton should
be located at the center. This cannot be achieved by many other
methods. We give a comparison to show the superiority of our
method in Fig. 15.

5.3. The effect of the threshold t

The effect of different threshold values t on the skeletons of
objects is illustrated in Fig. 16. As discussed in Section 1, the
proposed significance measure, BPR, can be taken as a proper
trade-off between different shape scales. Due to this, multi-scale
skeletons can be obtained by setting different threshold values t

for BPR. When the value of the threshold t increases, there are
fewer branches in the skeleton, which represent significant visual
parts of objects, and the trivial parts are ignored. This property is
in accord with human visual perception.



Fig. 11. Comparison between Krinidis’s method [14] (a), (b) and ours (c), (d). The parameters in experiments are set as follows: (a) a¼300, (b) a¼300, (c) t¼1.5, (d) t¼0.3,

(e) and (f) are the approximate Blum’s skeletons.

Fig. 12. Skeletons of six rectangles: (a) the original rectangle, (b) the rectangle with Gaussian noise (0, 1.0) on its boundary, (c) with Gaussian noise (0, 1.5), (d) with

uniform noise (1.0), (e) with uniform noise (1.2), (f) with uniform noise (1.5). The threshold t is set equal to 0.8 in all experiments.

Table 1
Skeletonization error in the examples presented in Fig. 12.

Krinidis’s

method [14]

Pruned by

DCE [20]

Pruned by the length of the

shortest boundary segment [15]

Pruned by the length

of chord [15]

Pruning by the

bisector angle [17]
Our method

Average error pixel 0.31 0.28 0.27 0.39 0.44 0.25

W. Shen et al. / Pattern Recognition 44 (2011) 196–209204
In order to discuss the effect of the threshold t in-depth, we
show the behavior of our method when the threshold is fixed. In
[14], the result of extracting skeleton from several kinds of shapes
with the threshold value a¼300 is given. The result is quoted in
Fig. 18. We also give the result of skeletons of the same shapes as
in [14] extracted by the proposed method using an equal
threshold of t¼1.0 in Fig. 17. Our skeletons extracted with the
same threshold are comparable to the skeletons given in [14].



Fig. 13. Comparison between the method in [20] (the first tow columns) and ours (the third column). N is the number of vertices selected by DCE, t is the threshold for

significance measure BPR.

Fig. 14. Comparison between the significance measure of the length of the shortest boundary segment [15] (a), (b), (c) and ours (d). The threshold values of the length of

the shortest boundary segment are 10, 30, 150 in (a), (b) and (c), respectively. The threshold value t¼1.0 in (d).

Fig. 15. Skeletons extracted from circles. (a) The skeleton obtained by the method in [34]. (b) The skeleton pruned by [20] with DCE set N¼3. (c) (d) The skeletons

extracted by our method with t¼0.8 and t¼0.5, respectively.
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To illustrate the accuracy of the skeletons obtained by different
thresholds, we extract ten groups of skeletons from the rectangles
in Fig. 12 by setting t of different values, and calculate the average
error pixel of each group by formula (14). The result is illustrated
in Fig. 19, which indicates that the accuracy of our skeletons is
stable when the variable quantity of t is within a certain range.



Fig. 16. First row: Multi-scale skeleton of a satellite shape. Second row: Multi-scale skeleton of a tree. The threshold values t set in experiment are shown in the brackets.

Fig. 17. The skeletons of different shapes extracted by the proposed method with

the same threshold (t¼1.0).

Fig. 18. The skeletons of different shapes extracted by the method in [14] with the

same threshold (a¼300).
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5.4. Quantitative evaluation of skeleton quality

The skeleton of high quality should represent significant visual
parts of objects. To evaluate this property of pruned skeletons, we
compute a simple characteristic called reconstruction error ratio
(RER), which can be used to measure the difference between the
reconstructed shape and the original binary shape. Let S be a
skeleton of shape A and let R(S) be the shape reconstructed from S,
the RER r(S, A) is defined as

rðS,AÞ ¼
AreaðAÞ�AreaðRðSÞÞ

AreaðAÞ
, ð15Þ

where Area( � ) denotes the area of a shape and it is measured in
pixels. As demonstrated in Fig. 20a–e, the RER values are all very
small; they are 0.0100, 0.0123, 0.0099, 0.0408, and 0.0097. This
demonstrates the high quality of the obtained skeletons. We also
show in Fig. 21 how the threshold t influences the RER.
5.5. The potential for shape matching

The skeletons of the shapes from the same class always have
similar global structures. Thus, shape matching can be achieved by
establishing the optimal correspondence of the derived skeleton
branches. The skeletons generated by the proposed method
provide suitable input for shape matching due to their high quality
as illustrated in Figs. 8 and 9. Since the skeletons provide a radius
value for each skeleton point, they can be converted to shock graph
[37–41] or bone graph [42] for matching. Here, we utilize the
method proposed in [27] to measure the similarity of skeletons
generated by the proposed method on the Aslan and Tari data set
[47]. There are 14 classes of shapes in the Aslan and Tari data set;
each class contains 4 shapes. Our retrieval result is 55, 55, and 53,
which is the same as the result in [27] and better than the result
obtained by inner distance shape context with dynamic program-
ming [48], which is 53, 51, and 38. The retrieval results are
summarized as the number of correct shapes for all 56 queries
among the first, second, and third closest matches. Therefore, the
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perfect result would be 56, 56, and 56. Some matching results are
shown in Fig. 22; the corresponding skeleton branches are linked
with green lines and marked with the same number.

Fig. 23 illustrates a comparison of shape matching to the
method in [20]. In Fig. 23, the apple in the first row and the ellipse
in the second row are two different shapes. Skeletons obtained by
the proposed method and method in [20] are shown in Fig. 23a
and b, respectively. The matching cost of the skeletons in Fig. 23b
is 5.39, which is much less than ours, which is 16.82. This means it
is easier to distinguish these two shapes by our skeletons. The
matching costs are also computed by the method in [27].
Fig. 20. Skeletons obtained by the proposed method. The shapes reconstructed from th

red. The RER values of skeletons in (a)–(e) are 0.0100, 0.0123, 0.0099, 0.0408 and 0.00

Fig. 19. The accuracy (average error pixel) of the skeletons obtained by using

different thresholds.
6. Conclusions and future work

In this paper, we present a novel significance measure for skeleton
pruning, called bending potential ratio. Based on this significance
measure, we propose an algorithm for skeleton growing. Our
experiments on MPEG-7 data set show that the obtained skeletons
are medially placed, insensitive to boundary noise, multi-scale, and
provide intuitive ordering of skeleton branches in that negligible
skeleton branches are pruned while significant branches remain. The
presented experimental results also demonstrate that our algorithm
e skeletons are marked with green and the reconstruction errors are marked with

97, respectively.

Fig. 21. The Reconstruction Error Ratio of skeletons of the shape in Fig. 20a for

different values of threshold t.



Fig. 22. Selected matching results on the Aslan and Tari data set. Corresponding

skeleton branches are linked with green lines and marked with the same number.

Fig. 23. Comparison between the method in [20]. (a) Skeletons obtained by

proposed method, the matching cost is 16.82. (b) Skeletons obtained by the

method in [20], the matching cost is 5.39. Corresponding skeleton branches are

linked with green lines and marked with the same number.
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generates skeletons of better quality than current state-of-the-art
approaches. As an intrinsic property of contours, the proposed
significance measure may be related to other properties, such as
curvature. Besides, the ruling points associated with a skeleton point
proposed in this paper are similar to the end points of the spokes
associated with Blum’s skeleton points. Our future work will include
the relationship of the proposed bending potential to other geometric
measures like local and global curvature.
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