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This paper aims to address the problem of shape clustering by discovering the common structure which

captures the intrinsic structural information of shapes belonging to the same cluster. It is based on a

skeleton graph, named common structure skeleton graph (CSSG), which expresses possible correspon-

dences between nodes of the individual skeletons of the cluster. To construct the CSSG, we derive the

correspondences by the optimal subsequence bijection (OSB). To cluster the shape data, we apply an

agglomerative clustering scheme, in each iteration, the CSSGs are formed from each cluster and the two

closest clusters are merged into one. The proposed agglomerative clustering algorithm has been

evaluated on several shape data sets, including three articulated shape data sets, Torsello’s data set, and

a gesture data set. In all experiments, our method demonstrates effective performance compared to

other algorithms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Shape clustering, the task of unsupervised grouping of shapes,
is a fundamental problem in computer vision and cognitive
perception. It is useful in many applications including speeding
up the database retrieval and automatical labeling of objects
presented in image collections.

Compared to general clustering, there are two main problems
in shape clustering: (1) Shape data has a wide range of intra-class
variations like deformation and articulation, which lead to the
difficulty of designing robust descriptor to represent the shape
data. (2) Most of the shape descriptors are not vectors and it
is difficult to convert them to vectors, since they are usually
represented by graphs, strings, or trees. Consequently, the simi-
larity between shape descriptors cannot be measured by standard
metrics, such as Euclidean distance, directly, and the popular
clustering algorithm, such as k-means, cannot be directly used for
shape data.

To capture the multiple variations of the shape, many effective
descriptors have been introduced for shape representation
[5,15,10,33,6]. All these shape descriptors are extracted from
one single shape, so even the descriptors extracted from the
shapes of the same class may be quite different due to the intra-
class deformation. In addition, no common intra-class informa-
tion is considered when computing the pairwise similarities.
ll rights reserved.
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The performance of shape clustering suffers from these limita-
tions. To solve these problems, we propose a hierarchical shape
clustering approach. In statistics, hierarchical clustering is a
method of cluster analysis which seeks to build a hierarchy of
clusters. Algorithms for hierarchical clustering are generally
either agglomerative, in which one starts at the leaves and
successively merges clusters together; or divisive, in which one
starts at the root and recursively splits the clusters [12]. The
reason for applying the hierarchical clustering framework for the
shape data is that it can find successive clusters using previously
established clusters and the common intra-class information can
be extracted from the current clusters to deliver more robust
representation for the next iteration.

In this paper, we choose agglomerative strategy, which initi-
alizes each shape as a cluster at first, then iteratively merges two
most similar clusters into a single cluster and produces one less
cluster at the next iteration until the number of clusters is
reduced to a desired number. Each cluster is represented by a
common structure abstracted from the skeletons of the shapes in
the cluster. Our motivation is that shapes in the same class have
common structure encoded into their skeletons as shown in Fig. 1.
The common structure is defined as a skeleton graph, called
common structure skeleton graph (CSSG), in which each node
consists of a set of matching nodes (instances) of the individual
skeleton graphs of the same class and each edge consists of a set
of edges (instances) in the individual skeleton graphs between the
matching nodes. Nodes and edges in the CSSG have their weights
related to the number of the instances, which is explicitly defined
in Section 4.2. The common structure corresponding to multiple
shape instances represents the intrinsic information of the class.
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Fig. 1. The common structures of the shapes in the same classes.

Fig. 2. The process of our hierarchical clustering. First, the five shapes are initialized as five clusters. In every step, two most similar clusters are merged into a new cluster.

Finally, the five shapes are clustered into two clusters.
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We utilize this information to improve the similarity measure
between shapes. The outline of the proposed skeleton based
hierarchical clustering is illustrated in Fig. 2. In the clustering
process, once the shapes are merged into one cluster, they are
taken as a whole and their CSSG is updated for the next iteration.
The distance between clusters is calculated by a proposed
measure between their CSSGs.

Our contribution can be divided into three aspects: (1) We
represent a cluster of shapes by the CSSG and link the CSSG in our
agglomerative shape clustering scheme. (2) We propose a dis-
tance measure between the skeletons of individual shapes which
also can be used to match the nodes. (3) We extend the above-
mentioned measure to computing the distance between clusters
and locating the correspondence between the nodes of CSSGs.

The rest of this paper is organized as follows. In Section 2, we
review the literature on shape clustering. Then we describe how
to construct the common structure skeleton graph and propose
our agglomerative shape clustering algorithm in Section 4. The
experimental results on five shape data sets are presented in
Section 5. Finally, we draw the conclusion in Section 6.
2. Related work

In this section, we review the related works, including shape
descriptor extraction, skeleton graph matching and shape clustering.

Generally, the existing shape descriptors can be classified into
two types: contour based and skeleton based. Shape context [5] is
the most popular contour based shape descriptor, which describes
the relative spatial distribution (Euclidean distance and orienta-
tion) of landmark points around feature points on the contour. Ling
et al. [15] use inner distance, which is the length of the shortest
path within the shape boundary, to replace the Euclidean distance
in shape context. As an extension of shape context, inner distance
is articulation insensitive. Felzenszwalb et al. [10] utilize a hier-
archical model which represents the contour by the segments
composed at multiple levels of resolution. This hierarchical repre-
sentation can capture the important shape variations.

An alternative to contour based representation is to use a
structural abstraction, in the form of a shape skeleton. The
skeleton, also known as medial axis, is defined as the set of
centers of all maximally inscribed disks (disks that are contained
inside the object but not contained in any other such disk) [6].
The skeleton is a very useful shape descriptor [22], and it can
better capture articulation of shapes than contour [21]. Since
skeletons contain the structural information of shapes, it is
natural to organize them into attribute-relation graphs (ARG),
which can be used to measure the similarities between skeletons.
Shock graph is a kind of ARG proposed by Siddiqi et al. [25–27],
which is obtained through specialized Shock Grammar [24]. In
shock graph, shocks are the branch points, end-points, and those
skeleton segments, which contains both topology and geometry
information of the shape [20,19]. Bone graph is an extension of
shock graph, which only retains the non-ligature structures of the
shock graph and offers improved stability [16]. Matching ARG is
an NPC problem, so several algorithms were proposed to obtain
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approximate solutions. In [20], Sebastian et al. define the edit
distance between shock graphs, however the computational cost
is expensive due to the complex edit operations. Methods such as
[8,18] could obtain the correspondence between nodes by con-
verting the skeleton graph to a skeleton tree. However, such a
conversion requires selecting one node as the root, which needs
heuristic rules as in [8,18]. As pointed out in [20], a relatively
small change in the shape causes the root to change, leading to a
significant change in the topology of the tree representation.
In addition, the conversion to a tree may result in loss of
important structural information, and consequently, negatively
influence the matching result [3]. Baseski et al. [4] use rooted-
depth-1 tree expressed from Aslan skeleton [1] to represent shape
data structure which benefits from the robustness of the dis-
connection locations of Aslan skeletons with respect to articula-
tions. The dissimilarity between two skeletons is measured by the
tree-edit distance involved in the influence of the category
contexts. Han et al. [11] apply an EM algorithm to learn both
the structure of the supergraph and the correspondences between
the nodes of the sample graphs. They mainly focus on the
topological structure and the general graph matching problem.
Bai et al. [3] represent each end point by the skeletal shortest
paths emanating from it and address skeleton graph matching by
matching the sequence of end points.

Our method employs the framework of agglomerative cluster-
ing. Agglomerative clustering iteratively merges two closest
clusters into a single one, therefore, a distance measure between
two clusters (groups of instances), also called linkage criteria,
must be defined [12]. The linkage criterion is always a function of
the pairwise distances between instances. Several linkage criteria
have been designed for determining the distance between groups
of instances, such as single linkage, complete linkage [29], and
average linkage [28]. However, the shape skeleton data has its
own intrinsic properties. Therefore, we will design a special
distance measure for the shape data.

In recent years, several methods have been proposed for shape
clustering. For example, Lakäemper et al. [13] design a distance
measure between a single shape and a group of shapes. Then a soft k-
means like framework is applied for shape clustering as the basis of
the new distance measure. Srivastava et al. [30] use the geodesic
paths constructed between shape boundaries to measure the distance
between shapes and perform clustering by using a minimum variance
type criterion and a Markov process. In [35], shape is converted to a
1D time series represented by the distance from the centroid of the
shape to the contour points. Then a nonlinear projection algorithm is
used to group together similar shapes. In [17], the elastic properties of
the shape boundaries are encoded in Riemannian metrics and the
clustering is applied based on the elastic geodesic distance with DP
alignment between shapes.

All the above clustering methods are contour based. Unlike
these methods, we represent shapes in terms of their skeletons,
which can better capture natural deformations of shapes. Another
advantage of our method is that the common structure can be
abstracted from skeletons which is useful for clustering. Learning
a skeletal shape abstraction from a set of exemplars has been used
for shape categorization. Demirci et al. [7] construct the class
skeletal prototype based on a many-to-many correspondence
between the nodes of skeletons obtained by the method in [8].
However, their prototype is still an exemplar, which is obtained
by averaging all the exemplars in the class. Consequently, their
prototype may not capture the intra-class structural variation
well. Besides, the construction process for their prototype
requires converting the skeleton graph to a skeleton tree, which
needs heuristic rules as described above. Torsello et al. [32]
attempted to find a mixture of tree unions that best accounts
for the observed samples using a minimum encoding criterion.
Our method is closely related to Torsello’s, however, there are two
differences. First, Torsello’s method concentrated on trees, while
we construct graphs for clusters. Second, in Torsello’s tree union,
only node weight are considered, while in our CSSG, both node
weight and edge weight are defined. Erdem and Torsello [9] also
proposed a skeleton-based shape clustering method aiming at
simultaneously extracting shape classes and learning class-
specific shape similarities. While they bias the similarity measure
between a shape and a shape cluster by making use of some
statistical values of the skeletal attributes in the cluster, we
improve the similarity measure between the shape clusters based
on the common structures abstracted from them.
3. Basic skeleton concepts

To better describe our approach, we give some basic skeleton
concepts first. We follow the definitions of end point, junction
point, connection point, skeleton graph, skeleton path and
path distance in [3]: The skeleton point with only one adjacent
point is an end point; the skeleton point with more than two
adjacent points is a junction point. If a skeleton point is not an
end point or a junction point, it is called a connection point. (For
skeletons in digital images, we assume that the curves of the
skeleton are one-pixel wide.) The end/junction points and the
sequences of connecting points between two end/junction points
form the nodes and the edges of the skeleton graph respectively.
An end point and a junction point in a skeleton graph are called
end node and junction node respectively. A skeleton path Pðu,vÞ is
the shortest path between a pair of nodes u,v in a skeleton graph.
Given are two skeleton paths Pðux,vxÞ, Pðuy,vyÞ represented by two
vectors of the radii of their maximal disks centered at the M

sample points: ðrxi; i¼ 1, . . . ,MÞ and ðryi; i¼ 1, . . . ,MÞ, respectively.
The path distance between Pðux,vxÞ and Pðuy,vyÞ is

pdðPðux,vxÞ,Pðuy,vyÞÞ ¼
XM
i ¼ 1

ðrxi�ryiÞ
2

rxiþryi
þa ðlx�lyÞ

2

lxþ ly
, ð1Þ

where a is the weight factor and lx and ly are the lengths of
Pðux,vxÞ and Pðuy,vyÞ, respectively. Both the radii and the length
are normalized to ensure that the path distance is scale invariant.

Besides the above definitions, we also give some others here:
The skeleton path between a pair of end nodes is called an end
path. The skeleton path between a junction node and an end node
is called a junction path. For two junction nodes j1,j2, if there are
no other junction nodes in the skeleton path between them, j1 and
j2 are connected directly, denoted by j1 _ j2.
4. Agglomerative shape clustering

In this section, we introduce our agglomerative shape cluster-
ing method. First we propose our distance measure between
shapes, then extend it to the distance measure between clusters.
The main idea of our approach is to define distance measures
between skeletons by extending the notion of the path distance
introduced in [3] which allows for the treatment of endpoints
first, followed by junction points, building up to the concept of a
CSSG for agglomerative clustering.

We utilize junction paths to represent shapes, since junction
points contain the structural information of shapes [34], as shown
in Fig. 3. However, junction points are not stable [3], they may
suffer from ligature-induced instability [16]. For example, in
Fig. 4, there are actually five junction points in the first horse’s
skeleton. We observe that if junction points j2 and j3 are merged
together as well as j4 and j5, then the skeleton graph structure will
resemble the structure of the second horse. The instability of



Fig. 4. The junction points on each shape are merged into three clusters (marked by the blue circles) to match well those on the other shape. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 5. Computing the distance between junction nodes jx and jy based on the matched of end nodes. There are k¼ 5 matched pairs of end nodes and E¼ 2 unmatched

end nodes.

Fig. 3. A junction point and its junction paths.
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shape skeletons has been studied in the literature [1,36,16,3,34].
In [16], the instable ligatures are removed which leads to a
more stable skeletal representation. Here, we modify the
merging strategy in [34] as a preprocessing step for our approach.
The details of the preprocessing step are described in the
Appendix.
4.1. Pairwise distance between shapes

Our basic idea for a distance measure between shapes is to
find the optimal correspondence between end nodes first, then
using the optimal correspondence between end nodes to deter-
mine the one between junction nodes and the distance between
shapes. The reason why we do not match the junction nodes
antecedent to matching end nodes is that finding the optimal
correspondence between end nodes benefits from the prior that
they have the order along the shape contour. Since junction nodes
do not have a natural order, they suffer from instability [3],
therefore it is much harder to match junction nodes directly.

For two skeletons Sx with nx end nodes and mx junction nodes and
Sy with ny end nodes and my junction nodes, their end nodes are
Ex ¼ fex1

, . . . ,exnx g and Ey ¼ fey1
, . . . ,eyny

g, respectively. The goal is to
obtain an optimal correspondence j : fex1

, . . . ,exnx g-fey1
, . . . ,eyny

,fg,
where exAEx is mapped to jðexÞAEy, and we allow a many-to-one
mapping to f. This is a sequence matching problem, so we compute
all distances between the end nodes in Ex and those in Ey and obtain a
nx� ny matrix FðEx,EyÞ:

FðEx,EyÞ ¼

edðex1
,ey1
Þ edðex1

,ey2
Þ . . . edðex1

,eyny
Þ

edðex2
,ey1
Þ edðex2

,ey2
Þ . . . edðex2

,eyny
Þ

^ ^ & ^

edðexnx ,ey1
Þ edðexnx ,ey2

Þ . . . edðexnx ,eyny
Þ

0
BBBB@

1
CCCCA, ð2Þ

where edð�,�Þ is the distance between two end nodes computed by
applying Optimal Subsequence Bijection (OSB) [14] to the matrix
whose entry is the path distance between any two end paths
emanating from the two end nodes, see [3] for more details.

In [3], the Hungarian algorithm is applied to FðEx,EyÞ to obtained
the optimal correspondence between the end nodes in Ex and those in
Ey. Here, we make a small change, since the order of the sequence is
not considered in the Hungarian algorithm, we apply OSB to the
matrix FðEx,EyÞ to obtain the optimal correspondence, which ensures
the consistency of the orders of the pair of end nodes along the
contours.

Now we introduce an optimal correspondence between junction
nodes and a pairwise distance measure between shapes. For two
skeletons Sx and Sy, their junction nodes are Jx ¼ fjx1

, . . . ,jxmx
g and

Jy ¼ fjy1
, . . . ,jymy

g, respectively. The optimal correspondence j
between end points has been obtained by the approach described
above. Assuming that k pairs of end nodes are matched and E end
nodes are not matched, as illustrated in Fig. 5. The distance between
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two junction nodes jxA Jx and jyA Jy is

jdðjx,jyÞ ¼
1

k
X

eAEm

pdðPðjx,eÞ,Pðjy,jðeÞÞÞþEz
 !

, ð3Þ

where EmDEx is the matched end nodes set (Em ¼ fex1
,ex2

,ex3
,ex5

,ex6
g

in Fig. 5) and z is the penalty factor for the unmatched end nodes
which is defined as

z¼meanjx A Jx ,ex AEx
min

jy A Jy ,ey AEy

pdðPðjx,exÞ,Pðjy,eyÞÞ

 !

þstdjx A Jx ,ex AEx
min

jy A Jy ,ey AEy

pdðPðjx,exÞ,Pðjy,eyÞÞ

 !
: ð4Þ

We define the penalty factor as the mean plus one standard deviation
(std) of the distances between the closest skeleton paths is to ensure
that the distance between the outlier and its closest skeleton path
would be larger than the penalty factor, so that the outliers would be
excluded from the matching with a relatively small penalty. This so
defined penalty factor is inspired by the definition of jump cost in the
sequence matching algorithm proposed by Latecki et al. [14]. Note
that, z defined in Eq. (4) is not symmetric with respect to Sx and Sy, so
we switch the roles of Sx and Sy, compute the value of z twice. Then
the final penalty factor z is the average of the two values.

Then we compute all distances between the junction nodes in
Jx and those in Jy and obtain a mx�my matrix FðJx,JyÞ:

FðJx,JyÞ ¼

jdðjx1
,jy1
Þ jdðjx1

,jy2
Þ � � � jdðjx1

,jyny
Þ

jdðjx2
,jy1
Þ jdðjx2

,jy2
Þ � � � jdðjx2

,jyny
Þ

^ ^ & ^

jdðjxnx
,jy1
Þ jdðjxnx

,jy2
Þ � � � jdðjxnx

,jyny
Þ

0
BBBBB@

1
CCCCCA: ð5Þ

Finally, we apply the Hungarian algorithm to the matrix FðJx,JyÞ to
obtain the optimal correspondence c : fjx1

, . . . ,ejmx
g-fjy1

, . . . ,jymy
,fg

between the junction nodes and the distance between the pair of
shapes Sx,Sy, since junction nodes do not have any natural order:

jpdðSx,SyÞ ¼HðFðJx,JyÞÞ, ð6Þ

where Hð�Þ is the Hungarian function. We refer to this distance
measure as JPD, for junction path distance.

4.2. Common structure skeleton graph construction

The CSSG is constructed from a cluster of shapes. As shown in
Fig. 6, each node in the CSSG consists of a set of matching nodes
(instances) of the skeletons in this cluster. The number of the
instances that belong to the node in the CSSG gives us a
significant information: A node that consists of few instances is
more likely an outlier, while a node which consists of many
instances is an important node. Thus, we can assign different
weights to different nodes according to the number of their
Fig. 6. Common structure skeleton graph construction. Colors indicate the correspond

instances belong to uex , ujx and ujy are fex1
,ex2

,ex3
g, fjx2

,jx3
g and fjy1

,jy2
,jy3
g

Pðujy ,uexÞ ¼ fPðjy1
,ex1
Þ,Pðjy2

,ex2
Þ,Pðjy3

,ex3
Þg. The numbers next to the nodes in the CSSG a
instances. As the numbers shown in Fig. 6, for a node u in the
CSSG constructed by l shapes, its weight is wNðuÞ ¼ 9u9=l, where
9 � 9 is the cardinality of a set.

As for the edge weight in the CSSG, it is computed by simply
counting the edges in the original skeleton graphs between nodes
that belong to two nodes in the CSSG. For an edge Pðux, uyÞ between
two nodes ux and uy in the CSSG, it consists of a set of edges that
belong to the individual skeletons, whose element is Pðnxi

,nyi
Þ, where

nxi
Aux,nyi

Auy and the same subscript of ‘‘nx’’ and ‘‘ny’’ means the
nodes are in the same skeleton. The weight of edge Pðux, uyÞ is simply
its cardinality: WEðPðux, uyÞÞ ¼ 9Pðux, uyÞ9. Fig. 6 shows an example of
computing the edge weight: The edge Pðujx,uexÞ between two nodes
ujx ¼ fjx2

,jx3
g and uex ¼ fex1

,ex2
,ex3
g, then Pðujx,uexÞ ¼ fPðjx2

,ex2
Þ,

Pðjx3
,ex3
Þg, thus, the weight wEðPðujx,uexÞÞ ¼ 2. Similarly, the

edge Pðujy,uexÞ ¼ fPðjy1
,ex1
Þ,Pðjy2

,ex2
Þ,Pðjy3

,ex3
Þg and its weight

wEðPðujy,uexÞÞ ¼ 3.

4.3. Distance measure between common structure skeleton graphs

Now we extend the junction path distance to measure the
distance between CSSGs. The CSSG is also a skeleton graph,
therefore, as computing junction path distance, we obtain the
optimal correspondence between end nodes of the CSSGs first,
then based on it, determine the optimal correspondence between
junction nodes and the distance between CSSGs.

Each node in the CSSG consists of a set of matched nodes of the
skeletons in the cluster. Therefore, in order to measure the distance
between CSSGs, we need to measure the distance between sets of
corresponding nodes. For two CSSGs CSx with nx end nodes and mx

junction nodes and CSy with ny end nodes and my junction nodes,
their end nodes are UEx ¼ fuex1

, . . . ,uexnx g and UEy ¼ fuey1
, . . . ,ueyny

g,
respectively, and their junction nodes are UJx ¼ fujx1

, . . . ,ujxmx
g and

UJy ¼ fujy1
, . . . ,ujymy

g, respectively. Consider two end nodes uex ¼

fex1
, . . . ,exlx

g �UEx and uey ¼ fey1
, . . . ,eyly

g �UEy, where lx and ly are
the cardinalities of the sets. Intuitively, for two CSSGs formed by the
shapes of the same class, an important node in the one is less likely to
match an outlier in the other. Therefore, we define the distance
between uex and uey as

uedðuex,ueyÞ ¼

P
i

P
kedðexi

,eyk
Þ

lx � ly
1þ

JwNðuexÞ�wNðueyÞJ

wNðuexÞþwNðueyÞ

� �
, ð7Þ

where J � J denotes the absolute value. Note that, by introducing the
penalty factor ðJwNðuexÞ�wNðueyÞJÞ=ðwNðuexÞþwNðueyÞÞ, two impor-
tant nodes are more likely to match each other and an outlier is less
likely to match an important node. If both uex and uey are important
nodes, then both wNðuexÞ and wNðueyÞ are large, thus
JwNðuexÞ�wNðueyÞJ and wNðuexÞþwNðueyÞ are small and large
respectively. Consequently, the penalty factor ðJwNðuexÞ�wNðueyÞJÞ=

ðwNðuexÞþwNðueyÞÞ is very small. While, without loss of generality, if
uex and uey are an important node and an outlier respectively, then
ences between the nodes in the CSSG and those in the individual skeletons. The

, respectively. Hence, the junction path Pðujx ,uexÞ ¼ fPðjx2
,ex2
Þ,Pðjx3

,ex3
Þg and

re their weights.
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JwNðuexÞ�wNðueyÞJ and wNðuexÞþwNðueyÞ are lager and smaller
respectively. Consequently, the penalty factor ðJwNðuexÞ�wNðueyÞJÞ=

ðwNðuexÞþwNðueyÞÞ is much larger than the one computed in the
former case. If both uex and uey are outliers, then both
JwNðuexÞ�wNðueyÞJ and wNðuexÞþwNðueyÞ are small, since there is
no hypothesis that the outliers are prone to match each other. Then
we compute a nx� ny matrix of the distances of end nodes as we did
in Section 4.1:

FðUEx,UEyÞ ¼

uedðuex1
,uey1
Þ uedðuex1

,uey2
Þ . . . uedðuex1

,ueyny
Þ

uedðuex2
,uey1
Þ uedðuex2

,uey2
Þ . . . uedðuex2

,ueyny
Þ

^ ^ & ^

uedðuexnx ,uey1
Þ uedðuexnx ,uey2

Þ . . . uedðuexnx ,ueyny
Þ

0
BBBB@

1
CCCCA: ð8Þ

Similarly, we apply OSB to the matrix FðUEx,UEyÞ to obtain the
optimal correspondence j : fuex1

, . . . ,uexnx g-fuey1
, . . . ,ueyny

,fg
between end nodes of the two CSSGs.

As for the optimal correspondence between junction nodes
and the pairwise distance between CSSGs, we apply the algorithm
with similar form as introduced in Section 4.1. Each edge in a
CSSG corresponds to multiple skeleton paths, so path distance
defined in [3] can be adapted to compute the distance between
the edges in CSSGs. For two junction nodes ujx ¼ fjx1

, . . . ,jxix g �UJx

and ujy ¼ fjy1
, . . . ,jyiy

g �UJy, where ix and iy are the cardinalities of
the sets. For two junction paths Pðujx,uexÞ and Pðujy,ueyÞ, the
distance between them is

updðPðujx,uexÞ,Pðujy,ueyÞÞ ¼P
Pðjxi

,exi
ÞAPðujx ,uexÞ

P
Pðjyk

,eyk
ÞAPðujy ,ueyÞ

pdðPðjxi
,exi
Þ,Pðjyk

,eyk
ÞÞ

wEðPðujx,uexÞÞ �wEðPðujy,ueyÞÞ
, ð9Þ

where the same subscript of ‘‘j’’ and ‘‘e’’ means that the junction
node and the end node are in the same skeleton graph.

For the two CSSGs CSx and CSy, assuming that k pairs of end
nodes are matched and E end nodes UEE are skipped (not
Fig. 7. Computing the distance between junction nodes ujx and ujy based on the

matched of end nodes. There are k¼ 5 matched pairs of end nodes and E¼ 2

unmatched end nodes UEE ¼ fuex4
,uey6
g.

Fig. 8. The agglomerative sha
matched). Skipping an outlier is trivial to the matching, while
skipping an important node increases the dissimilarity between
the two CSSGs. Therefore, we would like to assign a penalty to
each skipped node according to their weights. As shown in Fig. 7,
the distance between ujx and ujy is

ujdðujx,ujyÞ ¼
1

k
X

ue � UEm

updðPðujx,ueÞ,Pðujy,jðueÞÞÞ

 
þz

X
ue � UEE

wNðueÞ

!

� 1þ
JwNðujxÞ�wNðujyÞJ

wNðujxÞþwNðujyÞ

 !
, ð10Þ

where UEmDUEx is matched end nodes set (UEm ¼ fuex1
,

uex2
,uex3

,uex5
,uex6
g in Fig. 7) and z is the penalty factor for the

unmatched end nodes and defined as:

z¼meanujx AUJx ,uex AUEx
min

ujy AUJy ,uey AUEy

updðPðujx,uexÞ,Pðujy,ueyÞÞ

 !

stdujx AUJx ,uex AUEx
min

ujy AUJy ,uey AUEy

updðPðujx,uexÞ,Pðujy,ueyÞÞ

 !
: ð11Þ

We also switch the roles of CSx and CSy, compute the value of z
twice, and use the average as the final penalty factor z. Notice that
Eq. (3) is the special case of Eq. (10) when the common structure
only corresponds to a single instance.

Then we compute all distances between the junction nodes in
UJx and those in UJy and obtain an mx�my matrix FðUJx,UJyÞ:

FðUJx,UJyÞ ¼

ujdðujx1
,ujy1
Þ ujdðujx1

,ujy2
Þ � � � ujdðujx1

,ujyny
Þ

ujdðujx2
,ujy1
Þ ujdðujx2

,ujy2
Þ � � � ujdðujx2

,ujyny
Þ

^ ^ & ^

ujdðujxnx
,ujy1
Þ ujdðujxnx

,ujy2
Þ � � � ujdðujxnx

,ujyny
Þ

0
BBBBB@

1
CCCCCA: ð12Þ

Finally, we apply the Hungarian algorithm to the matrix
FðUJx,UJyÞ to obtain the optimal correspondence c : fujx1

, . . . ,
ujxmx
g-fujy1

, . . . ,ujymy
,fg between the junction nodes and the

distance between the pair of CSSGs CSx, CSy:

csdðCSx,CSyÞ ¼HðFðUJx,UJyÞÞ: ð13Þ

We refer to this distance measure between clusters as CSD, for
common structure distance.

4.4. Clustering scheme

Now we demonstrate our clustering scheme. Given are an
unlabeled shape set X ¼ fx1,x2, . . . ,xNg to be clustered into Y
clusters C¼ fC1,C2, . . . ,CYg, where N is the number of shapes,
and their skeletons are SS¼ fs1,s2, . . . ,sNg. The agglomerative
shape clustering scheme is shown in Fig. 8.

We refer to the proposed shape clustering method as
CSDþAHC, for agglomerative hierarchical clustering based on
common structure distance.
pe clustering algorithm.



Fig. 9. Comparison between different clustering methods on Torsello’s data set [32]. (a) CSDþAHC, (b) JPDþAHC, (c) JPDþNcuts, (d) IDSCþNcuts and (e) Union of

attributed trees [32].

Fig. 10. Clusters of the Aslan and Tari data set with 56 shapes by CSDþAHC.
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5. Experimental results

To assess the quality of the proposed clustering method, we
evaluate it on five standard data sets: Torsello’s data set [32], ‘‘50
hands’’ data set [17], and three Aslan and Tari data sets [2,1,4]. The
following clustering methods are considered for comparison in all our
experiments: The pairwise distance between shapes by inner distance
[15] with normalized cuts [23] used to cluster shapes, denoted by
IDSCþNcuts; Junction path distance with normalized cuts, denoted
by JPDþNcuts; JPD but with normalized cuts replaced by agglom-
erative hierarchical clustering with average linkage, denoted by
JPDþAHC; the proposed CSDþAHC. Our experiments are divided
into two parts. We commence by illustrating qualitative examples of
the clusters obtained by different clustering methods. Then we give
quantitative comparison between the clustering methods. All results
are obtained by tuning the desired number of clusters to be equal to
the natural number of classes of the data set. To apply Ncuts
algorithm, the distances between shapes must be converted to
similarities first. This usually can be done by using a Gaussian kernel.
Assuming that the distance between two shapes S and S0 is DðS,S0Þ,
then the similarity between them is obtained by WðS,S0Þ ¼
expð�D2

ðS,S0Þ=sð2Þ. In our experiments, we set s¼ 10:0 empirically.

5.1. Clustering examples

We begin with the illustration of clusters on a small data set
provided by Torsello [32] that contains 25 shapes grouped in 9 classes.
We set a¼ 150 for this dataset. We compare the proposed CSDþAHC
to the union of attributed trees which obtains the best clustering
result in [32], IDSCþNcuts, JPDþAHC and JPDþNcuts. Fig. 9 shows
the result of comparison, we set the number of clusters Y¼ 9 for all
the clustering methods. As shown in Fig. 9, comparing with
JPDþNcuts, JPDþAHC and IDSCþAHC, CSDþAHC achieves the
perfect result which shows the advantage of common structure.

We also test our method on the Aslan and Tari data set 56
shapes [2], which includes 14 classes of articulated shapes with
4 shapes in each class. We set a¼ 100 for this dataset and set the
number of clusters Y¼ 14 for all the clustering methods. Fig. 10



Fig. 11. Clusters of the Aslan and Tari data set with 56 shapes by IDSCþNcuts.

Fig. 12. Clusters of the Aslan and Tari data set with 56 shapes by JPDþNcuts.

Fig. 13. Clusters of the Aslan and Tari data set with 56 shapes by JPDþAHC.
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shows the clustering result obtained by CSDþAHC. There are only
two errors: four windmills are clustered with pentagrams and a
bone is clustered into a new cluster. However, the windmill is very
similar to the pentagrams so that the error seems acceptable. The
cluster results obtained by IDSCþNcuts, JPDþNcuts, JPDþAHC are
shown in Figs. 11–13, respectively. Clearly, CSDþAHC achieves the
best result. The results on the Aslan and Tari data set with 56 shapes
depict the advantage of JPD for measuring the distance between
articulated shapes and how CSDþAHC works in clustering. Fig. 14
illustrates several results of common structures obtained by
CSDþAHC. The left column shows the common structure of clusters
and the other columns show skeleton graphs from shapes which
belong to the cluster. Note that, the end nodes and the junction
nodes marked without number are the outliers detected by the
common structure, as the one in the skeleton of the fourth turtle.
Fig. 15 depicts the hierarchical property of CSDþAHC. We show the
clustering results obtained by turning different desired numbers of
clusters. Note that, if the clustering is allowed to be continued a bit
further (i.e. Y¼ 13), cat and horse shapes will be grouped together,
since they are two visually similar shape classes.

5.2. Quantitative analysis

To quantitatively analyze the clustering results, we use the
normalized mutual information (NMI) as a measure of clustering
results. The ground-truth class partition G and the returned
cluster partition D define a confusion matrix with each entry nðjÞi

being the number of data samples in cluster i and class j, and n is
the total number of samples. Then NMI is computed as follows:

2
PI

i ¼ 1

PJ
j ¼ 1

nðjÞi

n
log

nðjÞi nPI
k ¼ 1 nðjÞk

PJ
k ¼ 1 nðkÞi

HðGÞþHðDÞ

where I is the number of clusters and J is the number of classes.
HðGÞ ¼�

PI
i ¼ 1ðni=nÞ log ni=n and HðDÞ ¼ �

PJ
j ¼ 1ðn

ðjÞ=nÞ log nðjÞ=n

are the entropies of partition G and D, respectively. A high value
of NMI indicates that G and D match well.

We list the NMIs of the clustering results on Torsello’s data set
and the Aslan and Tari data set with 56 shapes in Tables 1 and 2 ,
respectively.

The ‘‘50 hands’’ data set [17] consists of 50 boundary shapes of
hands in different postures. The natural number of clusters in this
data set is (depending on subjective interpretation) 8 or 9, with
cluster sizes between 2 and 8 elements. The groundtruth clusters
of these two cases are illustrated in Fig. 16. We set a¼ 100 for this
dataset. Several clustering methods are compared on this data set,
including the method in [17], the method in [13], IDSCþNcuts,
JPDþNcuts, JPDþAHC and our CSDþAHC. As shown in Table 3,
whether the desired number of clusters Y¼ 9 or Y¼ 8,
CSDþAHC achieves the perfect result.

We also test cluster methods on a larger data set, the Aslan
and Tari data set with 180 shapes, which includes 30 classes of
articulated shapes with 6 shapes in each class. We set a¼ 100 for
this data set and set the number of clusters Y¼ 30 for all the
clustering methods. Table 4 shows the clustering results obtained
by IDSCþNcuts, JPDþNcuts, JPDþAHC and CSDþAHC. Our result
is much better than the results of other methods.

Finally, we test cluster methods on a much larger data set, the
Aslan and Tari data set with 1000 shapes, which includes 50
classes of articulated shapes with 20 shapes in each class. We set
a¼ 100 for this data set and set the number of clusters Y¼ 50 for
all the clustering methods. Table 5 shows the clustering results
obtained by IDSCþNcuts, JPDþNcuts, JPDþAHC, CSDþAHC and
Foreground Focus [37]. The result of Foreground Focus is quoted
from [9]. Other results in [9] are not obtained by tuning the
desired number of clusters to be equal to the natural number of
classes of the data set, so we do not quote them here. In Table 5,
our result is still the best, which illustrates the effectiveness of the
common structure on large data set.

To assess the ability of the proposed clustering algorithm to
classify the shape classes, we perform experiments on an increas-
ing number of shapes in the two Aslan and Tari data sets. As for
the Aslan and Tari data set with 56 shapes, we commence with
the 8 shapes from the first 2 classes and then increase the number
of shape classes under consideration until the full set of 56 shapes



Fig. 14. The common structure of several shape classes in the Aslan and Tari data set 56 shapes [2]. The end nodes (in red) and junction nodes (in green) are marked with

the numbers. The same number indicates the correspondences between nodes in the sample shapes and nodes in the common structure. The junction node and the end

node in the skeleton of the fourth turtle marked without numbers have low weight, therefore, we do not show them in the common structure. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 15. The hierarchical property of CSDþAHC shown on the Aslan and Tari data set 56 shapes [2]. The shapes in the same rectangular region are grouped into a cluster by

CSDþAHC. The rectangular regions are marked by two colors alternately to make them visible. From top to bottom, the desired number of clusters is decreased: (a) Y¼ 36.

(b) Y¼ 24. (c) Y¼ 14. (d) Y¼ 13. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Table 1
The NMIs of the clustering results on Torsello’s data set [32].

Method CSDþAHC JPDþAHC JPDþNcuts IDSCþNcuts [32]

NMI 1.0000 0.9618 0.7778 0.6431 0.9313

Table 2
The NMIs of the clustering results on Aslan and Tari data set with 56 shapes [2].

Method CSDþAHC JPDþAHC JPDþNcuts IDSCþNcuts

NMI 0.9734 0.8674 0.6174 0.5660
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was included. We plot the curves of NMI as the number of shape
classes is increased in Fig. 17. Similarly, we plot the curves
obtained by all the cluster methods on the Aslan and Tari data
set with 180 shapes in Fig. 18. We commence with 30 shapes
from the first 5 classes and then increase the number of shape
classes until all 180 shapes were included. In both Figs. 17 and 18,
CSDþAHC appears as the curve marked with green ‘‘square’’ and
clearly outperforms other clustering methods.

5.3. Parameter discussion

There is a parameter introduced in this paper, the threshold Tm

for merging junction points. Bigger threshold means that more
junction points would be merged together. Tm is a constant in all
our experiments: Tm¼5. There is another parameter introduced in
[3], the weight factor a. In Fig. 19, we show that the clustering
result is not sensitive to the choice for a.
6. Conclusion

In this paper, we present an agglomerative hierarchical algo-
rithm for shape clustering based on a common structure formed
by the shapes belonging to the same clusters. Unlike the general
clustering methods whose results only depend on the pairwise
similarities, the proposed clustering method extracts the common



Fig. 16. The groundtruth clusters of data set ‘50 hands’, taken from Mio et al. [17]. The natural numbers of clusters are 9 and 8 in (a) and (b) respectively.

Table 3
The NMIs of the clustering results on ‘‘50 hands’’ data set [17].

Method CSDþAHC [17] [13] IDSCþNcuts JPDþNcuts JPDþAHC

NMI

(Y¼ 9)

1.0000 1.0000 1.0000 0.6055 0.8403 0.9726

NMI

(Y¼ 8)

1.0000 – 1.0000 0.6732 0.8568 0.9331

Table 4
The NMIs of the clustering results on Aslan and Tari data set with 180 shapes [1].

Method CSDþAHC IDSCþNcuts JPDþNcuts JPDþAHC

NMI 0.9694 0.5423 0.5785 0.8793

Table 5
The NMIs of the clustering results on Aslan and Tari data set with 1000 shapes [4].

Method CSDþAHC IDSCþNcuts JPDþNcuts JPDþAHC Foreground

Focus [37]

NMI 0.8096 0.5433 0.4549 0.7693 0.7329

Fig. 17. The curves of NMI as the number of shape classes is increased on the

Aslan and Tari data set with 56 shapes [2].

Fig. 18. The curves of NMI as the number of shape classes are increased on the

Aslan and Tari data set with 180 shapes [1].

Fig. 19. The curves of NMI as the weight factor a are varied on the four data sets.

W. Shen et al. / Pattern Recognition 46 (2013) 539–550548
structure which captures the intrinsic intra-class structural infor-
mation of the cluster of shapes. Consequently, it can be used to
deliver more robust distance measure between clusters. The
presented experimental results demonstrate that our shape
clustering algorithm significantly outperforms other state-of-
the-art methods.

The high time complexity is the limitation of our method, since
the overall time required for a basic agglomerative hierarchical
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clustering is OðN2 logðNÞÞ [31], where N is the number of data
points. However, we can speed up the clustering by merging more
than two closest clusters in each iteration, which will be the topic
of our future work.
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Appendix A

Preprocessing. A merging strategy given in [34] says that any
pair of junction points are merged when the distance between
them are less than a threshold. However, this strategy is not
described clearly. For example, both the distance between junc-
tion points j1 and j2 and the one between junction points j1 and j2
are less than the threshold, however the distance between
junction points j2 and j3 is larger than the threshold. Should j2
and j3 be merged together? Here, we propose to cluster the
junction points by agglomerative hierarchical clustering with
single linkage. At first, each junction point starts in its own
cluster, then in each iteration, two closest clusters of junctions
are merged as one moves up the hierarchy. The distance measure
between clusters is always based on the distance measure
between pairs of closest instances.

For two junction points j1 and j2 on the skeleton S with n end
points E¼ fe1, . . . ,eng, the distance between them is

dðj1,jð2Þ ¼

1

n

Xn

i ¼ 1

pdðPðj1,eiÞ,Pðj2,eiÞÞ if j1 _ j2,

1 otherwise:

8><
>: ð14Þ

To cluster the junction points on skeleton S, we should give the
distance measure between clusters. For two cluster junction
points JP,JQ on skeleton S, the distance between them determined
by the single linkage criterion is

cdðJP,JQ Þ ¼
min

jp A JP,jq A JQ
dðjp,jqÞ if JP _ JQ ,

1 otherwise,

8<
: ð15Þ

where JP _ JQ means JP and JQ are connected directly, i.e., there
are no junction points of other clusters in any paths between the
junction points of JP and JQ.

Suppose that all junctions had been merged into m clusters
fJPig

m
i ¼ 1, the stopping criterion of the merge process is

min
i,k

cdðJPi,JPkÞZTm,ði,k¼ 1,2, . . . ,m,iakÞ, ð16Þ

where Tm is a threshold. The larger threshold means less clusters,
i.e. more junction points would be merged together. Since the
path distance is scale invariant, the threshold Tm is scale invariant
too. We set Tm¼5 empirically in all our experiments.

The junction points in one shape merged into the same cluster
are considered as a whole for the next computation. This means a
junction node in a skeleton graph corresponds a cluster of
junction points. To compute the distance between two junction
nodes JP,JQ , actually, we choose jpnA JP and jqnA JQ to represent
JP and JQ, respectively, if satisfying

ðjpn,jqn
Þ ¼ arg min

jp A JP,jq A JQ
jdðjp,jqÞ: ð17Þ

Then the distance between JP and JQ is jdðjpn,jqn
Þ. Other distances

related to junction nodes are computed by the similar way.
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