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Local reflection symmetry detection in nature images is a quite important but challenging task in
computer vision. The main obstacle is both the scales and the orientations of symmetric structure are
unknown. The multiple instance learning (MIL) framework sheds lights onto this task owing to its
capability to well accommodate the unknown scales and orientations of the symmetric structures.
However, to differentiate symmetry vs non-symmetry remains to face extreme confusions caused by
clutters scenes and ambiguous object structures. In this paper, we propose a novel multiple instance
learning framework for local reflection symmetry detection, named multiple instance subspace learning
(MISL), which instead learns a group of models respectively onwell partitioned subspaces. To obtain such
subspaces, we propose an efficient dividing strategy under MIL setting, named partial random projection
tree (PRPT), by taking advantage of the fact that each sample (bag) is represented by the proposed
symmetry features computed at specific scale and orientation combinations (instances). Encouraging
experimental results on two datasets demonstrate that the proposed local reflection symmetry detection
method outperforms current state-of-the-arts.

& 2015 Published by Elsevier Ltd.
1. Introduction

As a popular low-level representation, reflection symmetry
axis, also called medial axis in other literatures, has successfully
been employed in many applications, such as shape-based object
recognition [17,37,52,6], biological shape analysis [41], human
gait/pose recognition [45], and topological analysis in sensor net-
works [12]. Although symmetry-based research community has
embodied its remarkable success in such applications, it struggles
when being applied to the mainstream issues like object detection
and recognition in natural images. The reason is it has a restrictive
assumption that the silhouette of the foreground object has been
well-segmented, which is unrealistic for natural images. Since
foreground segmentation and contour detection in natural images
have not been fully solved yet, this limitation seriously restricts
the potential of the symmetry-based object recognition.

To broaden the range of potential of symmetry-based research,
in this paper, we aim to address the problem: Can we perform
symmetry detection directly in the natural images, without pre-
segmentation process? There are actually four primitive symmetry
types in 2D Euclidean geometry: reflection, rotation, translation
, xbai@hust.edu.cn (X. Bai).
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and glide-reflection [46,50]. In this paper, we focus on reflection
symmetry, which is most ubiquitous in the world around us [22].
So we term “reflection symmetry” by “symmetry” for short in the
rest of paper for simplicity. The symmetry axis is the centerline of
a ribbon-like object part. Such object parts are common in the
nature images, such as the trunk or limbs of humans or animals,
roads, rivers and elongated man-made objects. Detecting such
symmetry can deliver important hypotheses about the existence of
objects, signalling that “there might be something there of about
that size” [26]. Therefore, symmetry detection can offer the low-
level ridge feature for object part localization [21], the initial seeds
for image segmentation [43], and the templates for contour
grouping [1]. we refer to [39] and [28] for more thorough pre-
sentation about the importance and the usefulness of symmetry in
computer vision.

Symmetry detection in natural images is a quite challenging
problem, due to the large variation in objects and the cluttered
scene. With the growing interests in low-level feature extraction
with learning techniques [18,31,43], we believe that symmetry
detection with machine learning techniques is the right direction.

To our knowledge, [43] is the first work for learning-based
symmetry detection, which defines the symmetry features under
multiple scales and orientations and formulate symmetry detec-
tion as a multiple instance learning (MIL) problem. Another con-
tribution of them is constructing a dataset for evaluation of
e learning via partial random projection tree for local reflection
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Fig. 1. Some examples in the symmetry detection benchmark SYMMAX300 [43]. The groundtruths of symmetries are in yellow. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. (a) A group of samples which are hard to classify. Positive samples and negative samples are marked by the blue points and the red points respectively. (b) A proper
partition leads to ease of the difficulty of classification. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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symmetry detection (named SYMMAX300), which is converted
from the well-known Berkeley Segmentation Benchmark
(BSDS300) [32]. Fig. 1 illustrates some examples in this dataset.
Their learning-based framework serves as a promising direction
for symmetry detection, and gives us some fundamental obser-
vations: (1) feature extraction at multiple scales and orientations
is necessary for symmetry detection, since a symmetry is essen-
tially related to a object part with the unknown scale and orien-
tation; and (2) how to accommodate the unknown scale and
orientation of the symmetry features is the key to learn a effective
detector.

In this paper, we develop a novel multiple instance learning
framework to accommodate the unknown scale and orientation of
the symmetry features for symmetry detection. In training pro-
cedure, we first partition the training data into subsets, then train
a group of MIL classifiers, one for each subset. In the testing pro-
cedure, a testing sample is assigned into one subset according to
the partition rule learned in the training procedure, then classified
by the MIL model learned on this subset. Our method is motivated
by the phenomenon that the symmetry and non-symmetry pixels
are quite confusing and difficult to differentiate in the feature
space (state-of-the-art algorithm only reaches an F-measure of
0.434 on the SYMMAX300 dataset [43]). It is extremely difficult to
fit a global model to the training data. Instead, in the spirit of
divide-and-conquer strategy [8], partitioning the data into subsets
often leads to easier subproblems.

Fig. 2 illustrates our motivation: the blue points and the red
points in Fig. 2(a) denote the positive samples and negative sam-
ples respectively. Obviously, it is extremely difficult to find an
accurate decision boundary by learning a single discriminative
model. However, after a proper partition, the samples in each
partitioned cell are easy to be classified as shown in Fig. 2(b). To
Please cite this article as: W. Shen, et al., Multiple instance subspac
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partition the training data into confident subsets, we propose an
algorithm named partial random projection tree (PRPT), in which
we recursively partition the training data into left and right sub-
trees according to the randomized projection of the symmetry
features at a certain scale and orientation combination. Such a tree
is first learned from the positive samples. After that, each negative
sample starts at the root, then recursively branches left or right,
and reaches a leaf node finally. The samples in such a leaf node
represent a local subspace, and we train the MIL classifier in each
subspace. Here we do not partition all the training samples in a
single step, because such a strategy will result in meaningless
subsets due to the confusion between symmetry (positive sam-
ples) and non-symmetry (negative samples). We refer to this
method as MISL, for multiple instance subspace learning. The
flowchart of MISL is illustrated in Fig. 3.

Note that the proposed PRPT is distinct from the standard
random projection tree (RPT) [16,19] in that ours is mainly
designed for a special case of MIL setting. PRPT performs unsu-
pervised learning to cluster samples represented by multiple
instances, which is known as the multiple instance clustering
(MIC) problem [49,15]. Generally, MIC is an intrinsically ambig-
uous problem due to the mixture of positive and negative
instances in each sample. Current MIC methods require a good
initialization for cluster centers, otherwise may result in a low
performance [51]. However, our special setting (the predefined
arrangement of the symmetry features according to scale and
orientation combinations) eases the burden of MIC. Here we
benefit from this setting that each sample (bag), i.e. image pixel, is
represented by features computed at specific scales and orienta-
tions (instances) and each positive sample, i.e. symmetry pixel,
corresponds one true scale and orientation combination. There-
fore, we can divide the positive samples into subsets, where the
e learning via partial random projection tree for local reflection
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Fig. 3. The flowchart of the proposed multiple instance subspace learning. (a) By constructing a tree structure, the positive samples (denoted by green dots) are divided into
leaf nodes. (b) Each negative sample (denoted by red dots) starts at the root, then recursively branches left or right, and reaches a leaf node finally. (c) A group of MIL models
are trained on the subsets in leaf nodes respectively. (d) A testing sample (denoted by a blue dot) is classified by the MIL model of the leaf node where it falls into. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. The positive samples in lead nodes of the proposed partial random projection tree. Each row corresponds one leaf node. The sampled pixels are marked in red and the
their hypothetical orientations are marked by green arrows. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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hypothetical scale and orientation combination of the samples are
similar by looking up the features computed at one scale and
orientation combination recursively. Fig. 4 illustrates the mean-
ingful partitions obtained by PRPT, in each of which the hypo-
thetical orientations of the positive samples are similar. Training a
MIL model specifically in a local subspace leads to two advantages:
one is the improvement of discrimination, as the positive samples
and negative samples in one leaf node are close in the feature
space, the other is reduction of computational burden in training.

We also propose two types of symmetry features to describe
the intrinsic property of symmetry structures. Our first symmetry
feature is defined on pairs of boundaries by multi-scale repre-
sentation, which aims to search the hypotheses of pairs of
boundaries with consistent high strengths; the second symmetry
feature is defined on the regions at each sides of symmetries,
which aims to ensure the region represented by every symmetry,
i.e. the internal region bounded by the hypothesis of a pair of
boundary, belongs to one object part. Our features are not just a
simple extension of the features used in Tsogkas and Kokkinos's
Please cite this article as: W. Shen, et al., Multiple instance subspac
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work [43], as the information embedded in them would boost the
performance under the proposed framework.

At last, we construct a new public dataset, named Weizmann
Horse SYMMAX (WH-SYMMAX), for symmetry detection, which is
converted from the well known Weizmann Horse dataset [10]. By
applying skeletonization [38] on provided human-annotated
foreground segments, we generate the groundtruth skeletons of
horses. Some examples in WH-SYMMAX are shown in Fig. 5. We
hope this dataset can be further used to evaluate the methods for
symmetry-based class-specific object localization and recognition
in the future.

Our main contributions lies in two folds: one is that we pro-
pose an algorithm named partial random projection tree to effi-
ciently and robustly partition the training samples of multiple
scales and multiple orientations into subsets, which leads to a
more compact symmetry representation in each subspace. (We
will show that learning classifiers on the subsets obtained by PRPT
achieves favorably better performance than other clustering
strategy for symmetry detection in Section 4.) The other is that we
train the classifiers in each subspace to improve the discrimination
e learning via partial random projection tree for local reflection
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Fig. 5. Some examples in the Weizmann Horse SYMMAX dataset. The groundtruth symmetries of horses are in yellow. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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of symmetry detector, which leads to a performance improvement
on symmetry detection.

The rest of the paper is organized as follows. Section 2 briefly
reviews the related works about symmetry detection as well as
the skeletonization approaches for binary and gray-scale images.
In Section 3, our method for symmetry detection in natural images
is proposed, including symmetry feature extraction, subspace
partition and the multiple instance subspace learning learning
strategy. The experimental results are demonstrated in Section 4
and the conclusion is drawn in Section 5.
2. Previous work

Symmetry detection is closely related to the concept named
skeletonization. Skeletonization also deals with reflection sym-
metries, while to be emphasized, it follows the definition of the
medial axis transform (MAT) given by Blum [9], which detects the
centers of the maximal disks inside an object. Instead, the notation
of symmetry in this paper is according to a analogous model
named smoothed local symmetries (SLS) [11], which detects the
centers of the lines connecting pairs of symmetry points on an
object boundary. Therefore, SLS is a relax version of MAT, so it is
more applicable for complex natural scenes.

Skeletonization in binary shape images has been fully studied
in previous decades. A large number of skeletonization approaches
[3,7,40,14,5,38,36] have been proposed to generate quite “good”
skeletons. As we mentioned before, these approaches fail to be
applied to natural images as the foreground segmentation tech-
niques often cannot provide a confident object contour.

Skeletonization in gray-scale images [39,29] is much more
challenging. Several researchers try to extract the skeleton from
the edge strength map, which is generally obtained by applying
directional derivative operators to a gray-scale image smoothed by
Gaussian kernel. Morse et al. [33] compute the medial response of
each image pixel measured by the edge strengths in its local
region, then define the skeleton as the peak of medial responses.
Lindeberg [27] define the skeleton as the points for which the
intensity assumes a local maximum (minimum) in the direction of
the main principal curvature, and provide a promising mechanism
for automatic selection of the scale of Gaussian smooth kernel.
Jang and Hong [20] extract the skeleton from the pseudo-distance
map which is obtained by iteratively minimizing an object func-
tion defined on the edge strength map. The pseudo-distance map
is actually a variant of Euclidean distance map, in which the dis-
tance value is small at the location with high edge strength, and
vice versa. To reduce the influence of undesirable biased skeletons,
Yu and Bajaj [48] extract the skeleton by tracing the ridges of the
skeleton strength map calculated from the diffused vector field of
the edge strength map. Due to the lack of object prior, these
methods cannot handle the cluttered images with large variations
and complex backgrounds.

Alternatively, others attempt to discover symmetry axes from
the binary edge map, which is obtained by applying non-
maximum suppression, thresholding, edge linking and other
Please cite this article as: W. Shen, et al., Multiple instance subspac
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post-processing to the edge strength map. Adluru et al. [1] group
the object contours according to the local symmetry by walking
along the skeleton paths of a given reference shape. The local
symmetry is measured with symmetrical characteristic with
respect to a pair of adjacent edge segments. Stahl and Wang [42]
try to link the edge fragments with pair-wise symmetry to form a
closed contour and extract the symmetry axis of the contour
concurrently. They formulate such a contour grouping as a graph
optimization problem. The computational cost of these methods is
high due to the large number of the edge fragments in clutter
images. Besides, the performance of these methods seriously
depends on the quality of the edge maps.

Symmetry detection based on multi-scale segmentation seems
a promising direction. Levinshtein et al. [24] propose a symmetry
detection method based on multi-scale superpixel segmentation.
In their method, an ellipse is fit to each symmetric part formed by
grouping the adjacent superpixels with high shape and appear-
ance similarities, then the major axis of the ellipse is treated as the
symmetry axis. In their latest work, they extend the former model
to allow the symmetric part to bend and taper [23].

Widynski et al. [47] propose an interesting approach to detect
local symmetries in natural images, in which symmetry detection
is formulated as a tracking problem and addressed by particle
filtering. They use an adaptive geometric model to fit local sym-
metric structures which is able to detect the axes and contours of
the symmetric structures jointly. However, tracing symmetries in
natural images is quite difficult as symmetries are often inter-
sected or broken by background clutters.

Tsogkas and Kokkinos's learning-based symmetry detection
framework [43] serves as a confident direction and provide state-
of-the-art performance on the SYMMAX300 dataset. However, to
further improve the accuracy of symmetry detection, the more
informative symmetry features and more discriminative detector
are badly required.

Our work is somehow inspired by the recent object boundary
detection work named Sketch Token [25], which clusters the con-
tour data to form a mid-level representation. However, clustering
the symmetry data is much more challenging. First, both the scales
and the orientations of the symmetric parts are unknown and
have large variations. Therefore, the feature space of symmetries is
more scattered than the one of object boundaries. In addition,
partitioning the samples represented by multiple instances, i.e.
multiple instance clustering, is more difficult. Our method pro-
vides an effective way to cluster the symmetry samples repre-
sented by multiple instances, which offers compact subspaces to
build a strong symmetry detector and achieves encouraging per-
formances on both two datasets.
3. Methodology

In this section, we introduce our approach to detect symme-
tries in natural images. First, we describe the scale- and
orientation-sensitive features that we used to represent sym-
metric structures. Then, we discuss how to train an effective
e learning via partial random projection tree for local reflection
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symmetry detector by the proposed multiple instance subspace
learning strategy.

3.1. Feature extraction

Boundaries can be effectively detected by the features extracted
from the local image patches around them [31,18,25]. However,
the local image patches around symmetry points have no such
discrimination. To extract informative and useful symmetry fea-
tures, we need to consider the intrinsic properties of symmetries.
According to the definition of symmetry, it is straightforward that
it should be symmetrical to a pair of object boundaries. Therefore,
to perform symmetry detection, two types of information can be
leveraged: (1) symmetry detection can benefit from symmetrical
boundary detection and (2) the object region represented by a
symmetry axis should somewhat be self-similar. Based on these
two observations, we propose two types of features for symmetry
detection in this section. One is the boundary strength feature, the
other is the self-similarity feature. Intuitively, symmetries have
intrinsic scales and orientations, which are related to the pairs of
symmetrical boundaries. Thus, we compute the proposed features
at multiple scales and orientations.

To present our symmetry features clearly, we give some basic
notations first. Taking Fig. 6 as the reference, let RðP; a;θÞ denote
the rectangle centered at the image location P with a� a size and
θ orientation, RT ðP; a;θÞ and RBðP; a;θÞ denote the top half and
bottom half of RðP; a;θÞ respectively, HRðP;a;θÞ denotes the histogram
representation of the empirical distribution of some local cue
values (e.g. brightness, color and texture) in the pixels included in
the rectangle RðP; a;θÞ and Dð�; �Þ denotes the distance measure
between two histograms.

3.1.1. Boundary strength feature
To compute the boundary strength feature at the image loca-

tion P, for each scale s and orientation θ, we consider a pair of
locations PT and PB such that they have equal distance s to P and
the two straight lines PTP and PBP are both perpendicular to
orientation θ, as illustrated in in Fig. 6(a). The boundary strength
feature at P is defined by the contrasts between rectangles with
multiple sizes ½σ2;σ;2σ;2s� (the heuristic scale s is also considered
to ensure symmetric structures have high dissimilarity when
Fig. 6. The templates used to compute (a) boundary strength feature and (b) self-sim
orientation θ, (a) both the similarities between the red and blue rectangles surrounding P
top half of the blue rectangle. (For interpretation of the references to color in this figur
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compared to their surroundings [43]) centered at PT and PB:

fbðP; s;θÞ ¼ f abðP; s;θÞ; a¼
σ
2
;σ;2σ;2s

� �T
; ð1Þ

where

f abðP; s;θÞ ¼minðDðHRT ðPT ;a;θÞ;HRBðPT ;a;θÞÞ; DðHRT ðPB ;a;θÞ;HRBðPB ;a;θÞÞÞ:
ð2Þ

Instead of directly using both of the two boundary strengths at PT

and PB, we use the simple min operator to effectively ensure both
the boundary strength at PT and PB are strong, which guarantees
the robustness of our boundary strength feature against clutter.
Combining boundary information collected from the detection
window of multiple sizes can improve the performance of
boundary detection, since the detector of large size is robust to the
false positive boundaries caused by clutter and the small one
captures the detailed structures of boundaries [34,2].

3.1.2. Self-similarity feature
A symmetry axis can divide the object region into two sym-

metrical parts, which should be more or less similar to each other
in local cues (e.g. brightness, color and texture). We refer to this as
foreground self-similarity. Besides, as pointed out in [43], the two
background regions on the two sides of the object boundary are
usually uniform, which means the dissimilarity between these two
such regions should be low. We refer to this as background self-
similarity. Taking Fig. 6(b) as the reference and following the
notation in Section 3.1.1, we measure the foreground self-
similarity by

f sf ðP; s;θÞ ¼DðHRT ðP;s;θÞ;HRBðP;s;θÞÞ: ð3Þ

Similarly, the background self-similarity is measured by

f sb ðP; s;θÞ ¼DðHRT ðPT ;s;θÞ;HRBðPB ;s;θÞÞ: ð4Þ

We concatenate these two features as the self-similarity feature:

fsðP; s;θÞ ¼ ðf sf ðP; s;θÞ; f sb ðP; s;θÞÞ
T: ð5Þ

In this paper, we use the χ2-distance function [35] to measure
the difference between two histograms. The symmetry features
are extracted based on three types of local cues: brightness, color
and texture. Such features are computed at thirteen scales and
ilarity feature. Consider a skeleton point P, given a proper scale s and a proper
T and PB are low, (b) the bottom half of the red rectangle shows high similarity to the
e caption, the reader is referred to the web version of this paper.)

e learning via partial random projection tree for local reflection
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eight orientations per scale. As all these features are rectangle-
based and can be computed directly on integral images, they
induce little additional computational time cost, compared to the
features used in Tsogkas and Kokkinos's work [43].

3.1.3. Feature vector combinations
For each pixel, we obtain 24-dimensional feature vector at each

scale and each orientation: sixteen for the boundary strength
feature and eight for the self-similarity feature computed on the
four channels: brightness Ln, color an, bn and texture Tn:

xðP; s;θÞ ¼ ðfTbch
ðP; s;θÞ; fTsch ðP; s;θÞ; ch¼ Ln; an;bn; TnÞT: ð6Þ

3.2. Multiple instance subspace learning

As the defined symmetry features are scale- and orientation-
sensitive for each image pixel, it is nontrivial to train an effective
detector to handle these parameters (i.e. scales, orientations) as
latent variables during learning. Tsogkas and Kokkinos [43] adopt
the MIL framework, in which each image pixel is a bag, and fea-
tures computed at multiple scale and orientation combinations are
the instances. In this section, we first review a simple setting of
MIL briefly, then propose our learning framework.

3.2.1. Multiple Instance Learning
In the framework of MIL, samples are presented by bags, and

labels are provided for the bags rather than individual instances. If
a bag is labeled positive then it contains at least one positive
instance, whereas if a bag is labeled negative then its instances are
all negative. Formally, the training data has the form fðXi; yiÞgni ¼ 1,
where Xi ¼ fxijgmj ¼ 1 is a bag, xijARd is an instance, and yiAf0;1g is
a binary bag label. The subscripts i and j are the bag index in the
training dataset and the instance index in a bag, respectively. In
general, the bag label can be expressed by yi ¼maxjðyijÞ, where
yijAf0;1g is the instance label, which is unknown during training.
In this case, the negative log-likelihood cost function should be
defined over bags but not instances, which can be written as:

L¼ �
Xn
i

ðyi log ðpðyi jXiÞÞþð1�yiÞ log ð1�pðyi jXiÞÞÞ; ð7Þ

where pðyi jXiÞ is the bag probability that should acquire label yi. In
MIL setting, the probability of a bag is expressed in terms of its
instances. A Noisy-OR (NOR) rule is proposed in [44] to do this:

pðyi jXiÞ ¼ 1�∏
j
ð1�pðyij jxijÞÞ: ð8Þ

By modeling the instance probability as a logistic function:

pðyij jxijÞ ¼ ð1þexpð�wTxijÞÞ�1; ð9Þ

we can obtain the derivative of the negative log-likelihood (Eq.
(7)):

∇L¼ �
Xn
i

yi�pðyi jXiÞ
pðyi jXiÞ

Xm
j

pðyij jxijÞxij

0
@

1
A; ð10Þ

and use gradient ascent algorithm to optimize the log-likelihood.
For more details about MIL, we refer to [44,4].

3.2.2. Multiple instance subspace learning
As we described in Section 1, it is often difficult to fit a single

MIL model to some confusing data such as the symmetry features
in natural images. We present a novel MIL framework, which
instead learns a group of models on the subsets of the training
data respectively. The key step of this framework is how to par-
tition the training data properly.
Please cite this article as: W. Shen, et al., Multiple instance subspac
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Recall that the features of each image pixel are computed at the
predefined scale and orientation combinations, thus we can con-
catenate them into one feature vector according to a certain order
of the combinations. In this case, we can rewire the training data
as fðXi; yiÞgni ¼ 1, where Xi ¼ ðxT

ij; j¼ 1;…;mÞT. Note that, the instance
index j also indicates the order of the scale and orientation com-
bination here. We define a indexer ½��j operated on Xi to get back
the features of jth instance: ½Xi�j ¼ xij. To partition the training
data, we first construct a tree structure based on the positive
samples S ¼ fðXi; yiÞj iAIg, where I ¼ fijyi ¼ 1gni ¼ 1 is the set of the
indexes of the positive samples, by the following algorithm:

1. Randomly propose a set of splitting parameter candidates
ϕ¼ ðj;bÞ, where j is the instance index and b is a random unit
direction.

2. For each ϕ, compute

μðϕÞ ¼ 1
jI j

X
iAI

bT½Xi�j;

σðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iAI ðbT½Xi�j�μðϕÞÞ2
jI j

s
; ð11Þ

and find ϕn ¼ ðjn;bnÞ that maximize σðϕÞ.
3. Partition the set of samples S into left and right subsets by ϕn:

SlðϕnÞ ¼ fðXi; yiÞj iAI lðϕnÞg;SrðϕnÞ ¼ S⧹SlðϕnÞ; ð12Þ
where

I lðϕnÞ ¼ fijbnT½Xi�jn omedianfbnT½Xk�jn jkAIgg: ð13Þ

4. If the depth of the tree is below a maximum d and all fractions
of the sizes of subsets are above a minimum ρ, then recurse for
left and right subsets SlðϕnÞ and SrðϕnÞ, respectively.

As the dimension of our combined feature Xi is quite high
(24� 13� 8¼ 2496), it is more proper to apply RPT to handle
such high dimensional data rather than typical clustering algo-
rithms like K-means. However, different from the standard RPT
[16], we partition the data according to the randomized projection
of partial dimensions of features. For this reason, we named ours
as partial random projection tree (PRPT). The partial dimensions
selected in our algorithm just correspond to an instance computed
at a certain scale and a certain orientation. Recall that each posi-
tive sample only corresponds to one true scale and orientation
combination. Therefore by looking up such partial dimensions, we
can fast coarsely divide positive samples into subsets according to
their hypothetical scale and orientation combination. At each
splitting node of the tree, we choose a unit direction from the
parameter pool generated randomly along which the variance of
projections is maximum (Eq. (11)). Such a direction is actually
approaching the direction of the principle component of the data.
Along this direction, we split the samples into two equal-sized sets
(Eq. (13)). This splitting strategy is actually inspired by PCA-tree
[19]. Such tree based splitting methods aim to separate dissimilar
data recursively into different nodes. In PCA-tree, the principal
eigenvector of the covariance of the data is selected to project the
data and split the data. The direction of the principal eigenvector is
along the major axis of variation. In our case (multiple instances
setting), we cannot directly apply PCA-tree, while similarly we
search the direction leading to the projections which has the
maximum variance, as we have the assumption that the features of
positive instances and negative instances are quite different. To
avoid the overfitting, we restrict the tree depth and the number of
samples in leaf nodes.

Once a tree model is learned by PRPT, we partition the negative
samples guided by such a tree. For each negative sample Xi, it
e learning via partial random projection tree for local reflection
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Fig. 7. A typical pipeline of our symmetry detection. (a) The input image. (b) The detector response. (c) The non-maximum suppression. (d) The thresholded binary
symmetry map (in green). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 8. Evaluation of symmetry detectors on the SYMMAX300 dataset [43]. (a) The precision–recall curves. (b) Leading symmetry detection approaches are ranked according
to their F-measure with respect to human groudtruth. Our approach performs favorably better than others (Levinshtein [24], Linderberg [27], Particle Filtering [47], LCþMIL
[43] and LCþSPþMIL [43]). For clear visualization, we do not plot the precision–recall curves of all the approaches.
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starts at the root, then recursively branches left or right according
to the splitting rule (Eqs. (12) and (13)) learned during the above
tree construction procedure. Finally, it reaches a leaf node L of
whom index is denoted by IðXiÞ. Assume that there are K leaf
nodes in the tree, for each leaf node Lkðk¼ 1;…;KÞ, we rewrite the
samples in it as the form: fðXi; yiÞj IðXiÞ ¼ kgni ¼ 1. The samples in
each leaf node LK observe a local subspace. A MIL model is train on
each subspace by the method described in Section 3.2.1 to deliver
the model parameter wk and estimate the instance probability
pðyij jxijÞ.

In the testing procedure, for a testing sample Xt , it also starts at
the root of the learned tree, then recursively branches left or right
according to the splitting rule (Eqs. (12) and (13)), and finally falls
into a leaf node LIðXt Þ. The probability pðyt jXtÞ is given by

pðyt jXtÞ ¼ 1�∏
j
ð1�pðytj j ½Xt �jÞÞ; ð14Þ

where

pðytj j ½Xi�jÞ ¼ ð1þexpð�wT
IðXt Þ½Xt �jÞÞ�1: ð15Þ

We refer to this method as MISL, for multiple instance learning in
subspaces. Although the multiple classifiers are trained separately
in our method, as the output of our method is a probabilistic value,
it is unnecessary to perform calibration by fitting a probability
distribution as did in [30]. Once the probability of symmetry has
been computed at each pixel, a standard non-maximum sup-
pression scheme [13] is used to find the peak response of
Please cite this article as: W. Shen, et al., Multiple instance subspac
symmetry in natural images, Pattern Recognition (2015), http://dx.do
symmetry. A typical pipeline of our symmetry detection is illu-
strated in Fig. 7.
4. Experimental results

In this section, we show the experimental results and give the
comparisons between alternative approaches on both the SYM-
MAX300 dataset [43] and the WH-SYMMAX dataset. In the
remainder of this section, the parameters used in our approach are
set as: the number of training samples n¼100,000, the size of the
rectangle used for computing the boundary strength feature σ ¼ 8,
the maximum tree depth d¼ 5 and the minimum fraction size of
the samples in one leaf node ρ¼ 0:1.

4.1. SYMMAX300 dataset

The SYMMAX300 dataset contains 200 training and 100 testing
images with equal resolution of 481� 321. As the symmetry fea-
tures proposed in [43] is based on the contrasts between local cues
such as brightness, color and texture, we refer to them as LC.
Similarly, their spectral feature is denoted by SP. Our symmetry
features combine the boundary strength and the self-similarity, so
we denote them by BS in the rest of the paper. In Fig. 8(a), we
compare our symmetry detection method against other competing
methods. We follow the evaluation protocol used in [43], under
which the performances of symmetry detection approaches are
e learning via partial random projection tree for local reflection
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Table 1
The comparison between different partition strategies. The Baseline is the result
obtained without data partition.

Method Baseline K-means RPT PRPTW PRPT

F-measure 0.443 0.441 0.445 0.444 0:454
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measured by their maximum F-measure (2�Precision�RecallPrecisionþRecall) as well as
precision–recall curves with respect to human ground-truth
symmetries. To obtain the precision–recall curves, the detected
symmetry response is first thresholded into a binary map, which is
then matched with each ground-truth map separately (for each
image, the groundthruth data consist of 5–7 different groundtruth
maps constructed by different people). The matching allows small
localization errors between detected positives and groundtruths. If
a detected positive is matched with at least one of the ground-
truth maps, it is classified as true positive. In contrast, pixels that
correspond to no ground-truth map are false positives. By
assigning different thresholds to the detected symmetry response,
we can obtain a sequence of precision and recall pair, which is
used to plot the precision–recall curve. Perfect precision is
achieved when every detected positive has correspondences to
some groudtruth symmetry pixels, while perfect recall is achieved
when every groudtruth symmetry pixel is matched with some
detected positives. These two rates are contradictory, so F-measure
is used as a balanced value between these two for performance
validation.

The F-measure of the human-generated symmetry maps is just
0.73, indicating the challenge of this task. Our symmetry detector
compares favorably with other leading techniques and achieves
state-of-the-art results. Additionally, our symmetry detector
shows both improved recall and precision at most of the preci-
sion–recall regime. Fig. 8(b) breaks down the contributions of BS
and MISL to the performance of our symmetry detector. Looking at
the comparisons: BSþMIL vs LCþMIL, BSþMISL vs LCþMISL,
LCþMISL vs LCþMIL, BSþMISL vs BSþMIL, we observe that both
BS and MISL lead to considerable performance improvements on
the SYMMAX300 dataset. Especially worthy to mention that
LCþMISL only produces a slightly better F-measure than
LCþSPþMIL, however such a result is achieved without the help
of the spectral feature. Spectral feature extraction is quite time and
memory consuming. Besides, spectral feature is computed on the
Fig. 9. Examples of symmetry detection on the SYYMAX300 [43] dataset. The groudtrut
BSþMIL and BSþMISL are illustrated in the second, third and fourth rows respectively
Recall¼0.5. The true and false positives are marked in green and red respectively. Note
positives in all these examples. The proposed new MIL method (BSþMISL) further decre
and firth columns. (For interpretation of the references to color in this figure caption, t

Please cite this article as: W. Shen, et al., Multiple instance subspac
symmetry in natural images, Pattern Recognition (2015), http://dx.d
skeleton map obtained by LCþMIL, which means to obtain the
result of LCþSPþMIL, detection process has to be performed
twice. This is the reason why we do not include spectral feature in
our method. Due to the stochastic nature of our method, the above
results are obtained by averaging the results by performing our
method on the dataset five times. The standard error of mean
(SEM) of BSþMISL is 1:55� 10�4, which is small and shows the
stability of our method. Due to the randomness introduced in the
training phase in our method, the SEM of BSþMISL is larger than
the SEM of LCþMIL (4:46� 10�6), while this is acceptable. Qua-
litative comparisons are illustrated in Fig. 9, in which we observe
that BS reduces clutter and MISL further suppresses the false
responses on the clutter background qualitatively.

To demonstrate the advantage of PRPT in subspace learning, we
also learn the MISL model on the subsets partitioned by K-means
and standard RPT. In addition, to show the importance of forming
the subsets only from the positive samples, we also learn MISL on
the subsets obtained by applying PRPT directly to the whole
training set (including positive samples and negative samples). We
refer to this partition strategy as PRPTW. The performances of
symmetry detectors learned by MISL via different partition stra-
tegies are listed in Table 1. We use the same parameter setting for
both RPT and PRPT, and we vary the number of clusters for K-
means to obtain the best result. Note that, the partitions obtained
by RPT and PRPTW lead to just marginal improvement, and the
one obtained by K-means even results in performance reduction.
hs are marked in yellow in the first row. The results obtained by LCþSPþMIL [43],
. All binary symmetry maps are obtained by thresholding the detector response at
when compared with LCþSPþMIL, our symmetry feature (BSþMIL) reduces false
ases the errors induced from the clutter, such as the textural background in the first
he reader is referred to the web version of this paper.)
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Fig. 10. The results of BSþMISL by varying the number of training samples. (a) Training time. (b) F-measure.

Fig. 11. Evaluation of symmetry detectors on the WH-SYMMAX dataset. (a) The precision–recall curves. (b) Leading symmetry detection approaches are ranked according to
their F-measure with respect to groudtruth. Our approach (BSþMISL) performs favorably better than others (Levinshtein [24], Linderberg [27], LCþMIL [43] and
LCþSPþMIL [43]). For clear visualization, we do not plot the precision–recall curves of all the approaches.

Fig. 12. Examples of symmetry detection on the WH-SYYMAX dataset. The groudtruths are marked in yellow in the first row. The results obtained by LCþSPþMIL [43] and
BSþMISL are shown in the second and third rows respectively. All binary symmetry maps are obtained by thresholding the detector response at Recall¼0.5. The true and
false positives are marked in green and red respectively. Note when compared with LCþSPþMIL, our symmetry detector (BSþMIL) significantly suppresses false positives in
all these examples.
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Finally, we assess the performance change of our method
(BSþMISL) by varying the number of training samples. Fig. 10(a)
illustrates the relationship between the training time of our
method and the number of training samples. Note that when the
number of training samples becomes larger, the increase rate of
training time is reduced. This may be caused by the maximum tree
depth restriction used in building tree. From Fig. 10(b), we observe
that the performance obtains a slight improvement, when using
more training samples.

4.2. WH-SYMMAX dataset

The WH-SYMMAX dataset totally contains 328 images, among
which the first 228 are used for training and the rest are used for
testing. The comparison between our symmetry detection method
and others is illustrated in Fig. 11, which evidences that our
symmetry detector is better than competitors, as ours show both
improved recall and precision at most of the precision–recall
regime. Although the proposed symmetry feature BS does not lead
to any performance improvement on this dataset under the
standard MIL framework, the performance is significantly boosted
under the proposed MISL framework, with an improvement of
0.036 in F-measure. This phenomenon demonstrates that MISL is
able to explore the useful information embedded in the multi-
scale boundary strength feature. Qualitative comparisons are
illustrated in Fig. 12. It could be observed that our method sig-
nificantly suppresses the false positives on the background.
5. Conclusion

We have proposed a novel multiple instance subspace learning
approach for local reflection symmetry detection in nature images.
The proposed MISL approach is capable of accommodating the
unknown scale and orientation of the symmetry features effec-
tively and efficiently. The encouraging experimental results on
both the SYMMAX300 dataset [43] and the newly constructed
dataset validate the advantages of our approach, compared with
the current state-of-the-arts.

The proposed MISL learning framework is not limited to sym-
metry detection, but is general to some detection tasks in com-
puter vision. Our future work is to extend this learning framework
to other tasks, for example, applying it to detect objects under
multiple scales and orientations.
Conflict of interest

None declared.
Acknowledgement

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61303095 and 61222308,
in part by Research Fund for the Doctoral Program of Higher
Education of China under Grant 20133108120017 and in part by
Innovation Program of Shanghai Municipal Education Commission
under Grant 14YZ018.
References

[1] N. Adluru, L.J. Latecki, R. Lakämper, T. Young, X. Bai, A.D. Gross, Contour
grouping based on local symmetry, in: Proceedings of the ICCV, 2007, pp. 1–8.
Please cite this article as: W. Shen, et al., Multiple instance subspac
symmetry in natural images, Pattern Recognition (2015), http://dx.d
[2] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical
image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 898–916.

[3] C. Arcelli, G.S. di Baja, A one-pass two-operation process to detect the skeletal
pixels on the 4-distance transform, IEEE Trans. Pattern Anal. Mach. Intell. 11
(1989) 411–414.

[4] B. Babenko, M.H. Yang, S. Belongie, Robust object tracking with online multiple
instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011).

[5] X. Bai, L.J. Latecki, W. Liu, Skeleton pruning by contour partitioning with dis-
crete curve evolution, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007)
449–462.

[6] X. Bai, X. Wang, L.J. Latecki, W. Liu, Z. Tu, Active skeleton for non-rigid object
detection, in: Proceedings of the ICCV, 2009, pp. 575–582.

[7] G.S. di Baja, E. Thiel, Skeletonization algorithm running on path-based dis-
tance maps, Image Vis. Comput. 14 (1996) 47–57.

[8] J.L. Bentley, Multidimensional divide-and-conquer, Commun. ACM 23 (1980)
214–229.

[9] H. Blum, Models for the Perception of Speech and Visual Form, MIT Press,
Boston, MA, USA, 1967, pp. 363–380.

[10] E. Borenstein, S. Ullman, Class-specific, top-down segmentation, in: Proceed-
ings of the ECCV, 2002, p. 109–124.

[11] M. Brady, H. Asada, Smoothed local symmetries and their implementation, Int.
J. Robot. Res. 3 (1984).

[12] J. Bruck, J. Gao, A. Jiang, Map: medial axis based geometric routing in sensor
networks, Wirel. Netw. 13 (2007) 835–853.

[13] J. Canny, A computational approach to edge detection, IEEE Trans Pattern Anal.
Mach. Intell. 8 (1986) 679–698.

[14] W.P. Choi, K.M. Lam, W.C. Siu, Extraction of the euclidean skeleton based on a
connectivity criterion, Pattern Recognit. 36 (2003) 721–729.

[15] L.S. D. Zhang, F. Wang, T. Li, Maximum margin multiple instance clustering, in:
Proceedings of the IJCAI, 2009.

[16] S. Dasgupta, Y. Freund, Random projection trees and low dimensional mani-
folds, in: Proceedings of the STOC, 2008, pp. 537–546.

[17] M.F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, S.J. Dickinson, Object
recognition as many-to-many feature matching, Int. J. Comput. Vis. 69 (2006)
203–222.

[18] P. Dollár, Z. Tu, S. Belongie, Supervised learning of edges and object bound-
aries, in: Proceedings of the CVPR, 2006.

[19] Y. Freund, S. Dasgupta, M. Kabra, N. Verma, Learning the structure of manifolds
using random projections, in: Proceedings of the NIPS, 2007.

[20] J.H. Jang, K.S. Hong, A pseudo-distance map for the segmentation-free skele-
tonization of gray-scale images, in: Proceedings of the ICCV, 2001, pp. 18–25.

[21] I. Kokkinos, P. Maragos, A.L. Yuille, Bottom-up and top-down object detection
using primal sketch features and graphical models, in: Proceedings of the
CVPR, 2006, pp. 1893–1900.

[22] S. Lee, Y. Liu, Curved glide-reflection symmetry detection, IEEE Trans. Pattern
Anal. Mach. Intell. 34 (2012) 266–278.

[23] T.S.H. Lee, S. Fidler, S.J. Dickinson, Detecting curved symmetric parts using a
deformable disc model, in: Proceedings of the ICCV, 2013, pp. 1753–1760.

[24] A. Levinshtein, S.J. Dickinson, C. Sminchisescu, Multiscale symmetric part
detection and grouping, in: Proceedings of the ICCV, 2009, pp. 2162–2169.

[25] J.J. Lim, C.L. Zitnick, P. Dollár, Sketch tokens: a learned mid-level representa-
tion for contour and object detection, in: Proceedings of the CVPR, 2013.

[26] T. Lindeberg, Detecting salient blob-like image structures and their scales with
a scale-space primal sketch: a method for focus-of-attention, Int. J. Comput.
Vis. 11 (1993) 283–318.

[27] T. Lindeberg, Edge detection and ridge detection with automatic scale selec-
tion, Int. J. Comput. Vis. 30 (1998) 117–156.

[28] Y. Liu, Computational Symmetry in Computer Vision and Computer Graphics,
Now publishers Inc., Hanover, MA, USA, 2009.

[29] A.M. López, F. Lumbreras, J. Serrat, J.J. Villanueva, Evaluation of methods for
ridge and valley detection, IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999)
327–335.

[30] T. Malisiewicz, A. Gupta, A.A. Efros, Ensemble of exemplar-svms for object
detection and beyond, in: Proceedings of the ICCV, 2011.

[31] D.R. Martin, C. Fowlkes, J. Malik, Learning to detect natural image boundaries
using local brightness color and texture cues, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (2004) 530–549.

[32] D.R. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics, in: Proceedings of the ICCV, 2001, pp. 416–425.

[33] B.S. Morse, S.M. Pizer, A. Liu, Muitiscale medial analysis of medical images,
Image Vision Comput. 12 (1994) 327–338.

[34] X. Ren, Multi-scale improves boundary detection in natural images, in: Pro-
ceedings of the ECCV, 2008, pp. 533–545.

[35] Y. Rubner, J. Puzicha, C. Tomasi, J.M. Buhmann, Empirical evaluation of dis-
similarity measures for color and texture, Comput. Vis. Image Understand. 84
(2001) 25–43.

[36] P.K. Saha, G. Borgefors, G.S. di Baja, A survey on skeletonization algorithms and
their applications, Pattern Recognit. Lett. (2015), http://dx.doi.org/10.1016/j.
patrec.2015.04.006.

[37] T.B. Sebastian, P.N. Klein, B.B. Kimia, Recognition of shapes by editing their
shock graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 550–571.

[38] W. Shen, X. Bai, R. Hu, H. Wang, L.J. Latecki, Skeleton growing and pruning
with bending potential ratio, Pattern Recognit. 44 (2011) 196–209.

[39] K. Siddiqi, S. Pizer, Medial Representations, Springer, New York, NY, USA, 2009.
e learning via partial random projection tree for local reflection
oi.org/10.1016/j.patcog.2015.10.015i

http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref2
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref2
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref2
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref3
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref3
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref3
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref3
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref4
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref4
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref5
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref5
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref5
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref5
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref7
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref7
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref7
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref9
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref9
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref11
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref11
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref12
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref12
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref12
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref13
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref13
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref13
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref14
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref14
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref14
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref17
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref17
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref17
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref17
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref22
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref22
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref22
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref26
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref26
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref26
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref26
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref27
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref27
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref27
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref28
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref28
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref29
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref29
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref29
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref29
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref31
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref31
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref31
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref31
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref33
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref33
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref33
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref35
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref35
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref35
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref35
dx.doi.org/10.1016/j.patrec.2015.04.006
dx.doi.org/10.1016/j.patrec.2015.04.006
dx.doi.org/10.1016/j.patrec.2015.04.006
dx.doi.org/10.1016/j.patrec.2015.04.006
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref37
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref37
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref37
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref38
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref38
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref38
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref39
http://dx.doi.org/10.1016/j.patcog.2015.10.015
http://dx.doi.org/10.1016/j.patcog.2015.10.015
http://dx.doi.org/10.1016/j.patcog.2015.10.015


W. Shen et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
[40] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, S.W. Zucker, Shock graphs and
shape matching, Int. J. Comput. Vis. 35 (1999) 13–32.

[41] E. Sorantin, C. Halmai, B. Erdöhelyi, K. Palágyi, B. Geiger, G. Friedrich, K. Kiesel,
S. Loncaric, Spiral ct based assessment of laryngotrachealstenoses with 3d
image processing using a skeletonisation algorithm, IEEE Trans. Med. Imaging
21 (2002) 263–273.

[42] J.S. Stahl, S. Wang, Globally optimal grouping for symmetric closed boundaries
by combining boundary and region information, IEEE Trans. Pattern Anal.
Mach. Intell. 30 (2008) 395–411.

[43] S. Tsogkas, I. Kokkinos, Learning-based symmetry detection in natural images,
in: Proceedings of the ECCV, 2012, pp. 41–54.

[44] P.A. Viola, J.C. Platt, C. Zhang, Multiple instance boosting for object detection,
in: Proceedings of the NIPS, 2005.

[45] D.K. Wagg, M.S. Nixon, On automated model-based extraction and analysis of
gait, in: Proceedings of the FG, 2004, pp. 11–16.

[46] H. Weyl, Symmetry, Princeton University Press, Princeton, NJ, USA, 1952.
Please cite this article as: W. Shen, et al., Multiple instance subspac
symmetry in natural images, Pattern Recognition (2015), http://dx.do
[47] N. Widynski, A. Moevus, M. Mignotte, Local symmetry detection in natural
images using a particle filtering approach, IEEE Trans. Image Process. 23 (2014)
5309–5322.

[48] Z. Yu, C.L. Bajaj, A segmentation-free approach for skeletonization of gray-
scale images via anisotropic vector diffusion, in: Proceedings of the CVPR,
2004, pp. 415–420.

[49] M.L. Zhang, Z.H. Zhou, Multi-instance clustering with applications to multi-
instance prediction, Appl. Intell. 31 (2009) 47–68.

[50] P. Zhao, L. Yang, H. Zhang, L. Quan, Per-pixel translational symmetry detection,
optimization, and segmentation, in: Proceedings of the CVPR, 2012, pp. 526–
533.

[51] J.Y. Zhu, J. Wu, Y. Wei, E.I.C. Chang, Z. Tu, Unsupervised object class discovery
via saliency-guided multiple class learning, in: Proceedings of the CVPR, 2012,
pp. 3218–3225.

[52] S.C. Zhu, A.L. Yuille, Forms: a flexible object recognition and modelling system,
Int. J. Comput. Vis. 20 (1996) 187–212.
Wei Shen received his B.S. and Ph.D. degrees both in Electronics and Information Engineering from the Huazhong University of Science and Technology, Wuhan, China, in
2007 and in 2012, respectively. From April 2011 to November 2011, he worked in Microsoft Research Asia as an intern. Now he is currently an assistant Professor with the
School of Communication and Information Engineering, Shanghai University, Shanghai, China. His research interests include shape analysis, edge and symmetry detection
and human pose estimation.
Xiang Bai received the B.S., M.S., and Ph.D. degrees from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 2003, 2005, and 2009, respectively, all
in Electronics and Information Engineering. He is currently a Professor with the Department of Electronics and Information Engineering at HUST. He is also the Vice Director
of the National Center of Anti-Counterfeiting Technology at HUST. His research interests include object recognition, shape analysis, scene text recognition, and intelligent
systems.
Zihao Hu is currently an undergraduate student with the Department of Electronics and Information Engineering at Huazhong University of Science and Technology,
Wuhan, China.
Zhijiang Zhang received his Ph.D. degree from Harbin Institute of Technology, Harbin, China, in 1999. He is currently a Professor with the School of Communication and
Information Engineering, Shanghai University, Shanghai, China. His research interests include 3D reconstruction and digital holography.
e learning via partial random projection tree for local reflection
i.org/10.1016/j.patcog.2015.10.015i

http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref40
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref40
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref40
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref42
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref42
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref42
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref42
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref46
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref47
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref47
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref47
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref47
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref49
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref49
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref49
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref52
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref52
http://refhub.elsevier.com/S0031-3203(15)00394-5/sbref52
http://dx.doi.org/10.1016/j.patcog.2015.10.015
http://dx.doi.org/10.1016/j.patcog.2015.10.015
http://dx.doi.org/10.1016/j.patcog.2015.10.015

	Multiple instance subspace learning via partial random projection tree for local reflection symmetry in natural images
	Introduction
	Previous work
	Methodology
	Feature extraction
	Boundary strength feature
	Self-similarity feature
	Feature vector combinations

	Multiple instance subspace learning
	Multiple Instance Learning
	Multiple instance subspace learning


	Experimental results
	SYMMAX300 dataset
	WH-SYMMAX dataset

	Conclusion
	Conflict of interest
	Acknowledgement
	References




