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Abstract—The launch of Xbox Kinect has built a very suc-
cessful computer vision product and made a big impact to
the gaming industry; this sheds lights onto a wide variety of
potential applications related to action recognition. The accurate
estimation of human poses from the depth image is universally
a critical step. However, existing pose estimation systems exhibit
failures when faced severe occlusion. In this paper, we propose an
exemplar-based method to learn to correct the initially estimated
poses. We learn an inhomogeneous systematic bias by leveraging
the exemplar information within specific human action domain.
Furthermore, as an extension, we learn a conditional model by
incorporation of pose tags to further increase the accuracy of
pose correction. In the experiments, significant improvements
on both joint-based skeleton correction and tag prediction are
observed over the contemporary approaches, including what is
delivered by the current Kinect system. Our experiments for
facial landmark correction also illustrate that our algorithm is
applicable to improve the accuracy of other detection/estimation
systems.

Index Terms—Kinect, random forest, pose correction, skeleton,
pose tag.

I. INTRODUCTION

W ITH the development of high-speed depth cameras [1],
the computer vision field has experienced a new op-

portunity of applying a practical imaging modality for building
a variety of systems in gaming, human computer interaction,
surveillance, and visualization. A depth camera provides depth
information as different means to color images captured by
the traditional optical cameras. Depth information gives extra
robustness to color as it is invariant to lighting and texture
changes [2], although it might not carry very detailed infor-
mation of the scene.

The human pose estimation/recognition component is a
key step in an overall human action understanding system.
High speed depth camera with the reliable estimation of the
human skeleton joints [3] has recently led to a new consumer
electronic product, the Microsoft Xbox Kinect [1].

Even though the depth data provides invariant and informa-
tive cues, existing systems (e.g. classification-based approach-
es for skeleton joint detection [3]) are not all satisfactory
due to severe occlusions. Fig. 1 illustrates a pipeline of
pose recognition, which includes three important steps: (1)
background removal, (2) initial pose estimation, and (3) pose
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Fig. 1. Pose recognition pipeline. From a depth image of single frame,
the pipeline includes background removal, initial pose estimation, and pose
correction. The skeleton joints marked by color dots in (c) are the ones with
high confidence in estimation whereas the ones without color dots are with
the low confidence.

correction. After the background is removed from the depth
image, skeleton joints are estimated from the foreground depth
information using e.g. [3]–[7]. Note that, serious errors exist
in the estimated skeleton in Fig. 1(c). The pose correction
stage further takes in these initial per-frame estimations (as
“noisy” input) and tries to correct the errors and deliver
more robust results. In this paper, we focus on the third
step, pose correction, which also plays a very important role
in the overall pose detection/recognition pipeline. To show
to what extent the third stage can help, the pose correction
stage performs “de-noising” by working on extracted “noisy”
skeleton joints only, without looking back at the original depth
data.

To perform pose correction, e.g. obtaining the result shown
in Fig. 1(d) from a noisy estimation in Fig. 1(c), two types of
information can be leveraged: (1) temporal motion consistency
and (2) the systematic bias. Using the temporal information to
enforce the motion consistency has been extensively studied
in the literature [8], [9] but studying the systematic bias has
received relatively less attention. Generally, the biases are no-
linear and are associated with complex data manifolds. As
illustrated in Fig. 2, the systematic biases do exist, especially
in domain specific actions.

For a general estimation problem, its systematic bias might
be significant and has an explicit analytic function [10]. In
our task of human action pose recognition, each pose is
represented by a number of skeleton joints; each joint is
estimated/extracted using local and contextual depth features
[3]. The bias estimation problem in our task observes two
properties: (1) human action has certain (sometimes strict)
regularity especially when some actions, e.g. golf swing or
football throwing, are performed, and (2) the bias is not
homogeneous in the data manifold. For example, when a
person is facing the camera with no occlusion, the initial
estimations are accurate; when a person is standing in a side-
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view with certain hand motion, there is severe occlusion and
the initial estimation may not be all correct, as illustrated in
Fig. 1. In this paper, the main contribution is learning the
inhomogeneous bias function to perform pose correction for
one domain specific action and we emphasize the following
four points: (1) exemplar-based approach serves a promising
direction for pose correction in depth images, (2) learning an
inhomogeneous regression function should naturally perfor-
m data-partition, abstraction, and robust estimation. With a
thorough experimental study, our approach shows encouraging
results, (3) learning an regression function conditioned on a
incorporated global parameter gives more nature data partition,
thus further improve the performance of pose correction, (4)
our regression based approach is general, it’s applicable to
correcting not only the pose estimated from Kinect sensor,
but also estimation errors involved from other sensors.

The remainder of this paper is organized as follows: Sec. II
reviews the works related to human pose estimation and
correction. Sec. introduces the skeleton data and ground truth
used in our work. Sec. IV describes the proposed approach
to pose correction in detail. The experimental results on
joint-based skeleton correction, pose tag prediction and facial
landmark correction are presented in Sec. V. Finally, Sec. VI
draws conclusions and points out potential directions for future
research.

This paper extends our preliminary work [11] with the
following contributions: (1) the proposal of a conditional
regression model as well as the cascaded one, which further
enhance the pose correction performance, (2) tag prediction
experiments on a new football throwing data set, (3) landmark
correction experiments to show the generality of the proposed
method.

Fig. 2. Three groups of poses. In each group, the poses are similar, and
the errors of the estimated skeletons are somewhat systematic, e.g. the right
forearms of the skeletons in the second group and those in the third group.

II. RELATED WORK

Motion and action recognition from optical cameras has
been an active research area in computer vision; typical ap-
proaches include 3D feature-based [12], part-based (poselets)
[13], and segment-based [14] approaches. Although insights

can be gained, these methods are not directly applicable to
our problem.

Benefit from rapid development of the real-time depth
camera, action recognition from depth images has been a hot
topic in recent years. Shotton et al. [3] cast pose estimation
as a per-pixel classification problem. They compute the depth
comparison feature [15] of each pixel, then classify each pixel
into human parts. Finally the modes of probability mass for
each part are take as the joint position proposals. Girshick
et al. [4] improve Shotton’s method, they predict the offset
between each pixel and each joint by regression instead. Sun
et al. [5] follows Girshick’s regression-based method, they lean
the regression model conditioned on several global parameters,
such as height and torso orientation. Ye et al. [6] propose
to search the most similar pose in the database by matching
the cloud points of the depth images and then refine the best
matching pose to be the estimated pose. Baak et al. [7] also
propose a data driven approach for pose estimation, instead
of matching cloud points, they extract features from the depth
data and then measure the similarity between the extracted
features. A recent survey on the human action analysis with
Kinect depth sensor can be found in [16]. These methods
provide the direct input for our method, so our method
will benefit from the improvement of these pose estimation
methods.

From a different view, bias estimation has been a long
standing problem in statistics [10]. Related work in the pose
correction task uses physical-model-based approaches [17],
Kalman-like filters [18], or exemplar-based approaches but
with very specific design, which is hard to adapt to the general
task [19]. Here we adopt the random forest regressor, which
takes in both the estimated solutions and their estimation
uncertainties. We show significant improvement over other re-
gressors such as nearest neighborhood [20], Gaussian process
regression [21], support vector regression [22], and logistic
regression [23]. Our approach is real-time and can be directly
applied to the Kinect system.

III. DATA

In this section, we introduce the data used for our pose
correction problem. The recently launched Kinect camera [1]
is able to give 640× 480 image at 30 frames per second with
depth resolution of a few centimeters. Employing the Kinect
camera, we are able to generate a large number of realistic
depth images of human poses. The human skeleton estimated
from the depth image by the current Kinect system [3] is the
direct input for our approach, which is called ST (Skeleton
esTimation) in the rest of this paper. As shown in Fig. 3(a),
there are 20 body joints in a skeleton, including hips, spine,
shoulders, head, elbows, wrists, hands, knees, ankles, and feet.

As suggested by the recent work [3], [4], the ground truth
positions of the body joints can be captured by motion capture
(mocap) system. We obtain a set of mocap of human actions
as the ground truth of the estimated skeletal joints. The mocap
data is also called GT (Ground Truth) in the rest of this paper.
In our experiments, we limit the rotation of the user to ±120◦

in both training and testing data. Fig. 3(b) shows several pairs
of ST and GT.
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Fig. 3. Skeleton data. (a) A template skeleton and its joints. The skeleton is a simple directed graph, in which the directions are denoted by the arrows
beside the skeleton edges. For denotational simplicity, we do not show the arrows in other figures. (b) Several pairs of input noisy skeletons (upper) and
ground truth skeletons (lower).

Fig. 4. Pose tag. Each type of poses are assigned to a tag, e.g. the tag of
“front swing” (the last pose) is about 0.95.

As for gaming applications, skeletons with 20 joints are too
much data for games to process, since they usually only need
one or two global parameters to describe the motion. So pose
tag is introduced to be used to drive the avatar to put on the
same pose as the player performs in the somatosensory game.
The pose tag is a real value ranging from 0.0 to 1.0, indicating
a specific stage in a particular action, e.g. golf swing. In a
domain of specific action, each type of poses is assigned a tag
manually. For example, the tag value of the poses of ”front
swing” and ”back swing” are within the intervals [0.8 1.0] and
[0.0 0.2] respectively. The accurate value is determined by the
amplitude of swing. Fig. 4 shows the tag values of a typical
golf swing action. We will demonstrate how to enhance pose
correction by incorporating pose tags.

IV. POSE CORRECTION

A. Objectives

We focus on two tasks: joint-based skeleton correction and
pose tag prediction. Our inputs are m estimated skeletons
st = (ST1, . . . , STm) from a video sequence of m depth im-
age frames. Each skeleton estimation ST includes n (n = 20
here) joints: ST = (x̂j , cj ; j = 1, . . . , n), where x̂j ∈ R3

denotes the world coordinates of the jth body joint, as shown
in Fig. 3. cj indicates the confidence for the estimation x̂j by
the skeleton joint detector, i.e. if joint j has high confidence,
cj = 1; Otherwise, cj = 0. For example, in Fig. 1(c), the

skeleton joints marked by color dots are the ones with high
confidence in estimation whereas the ones without color dots
are with the low confidence.

The first task (joint-based skeleton correction) is to predict
the “true” position of each joint: x̂j → xj and the “true”
skeletons gt = (GT1, . . . , GTm) where each GT = (xj ; j =
1, . . . , n) and xj ∈ R3. In training, we are given a training
set of {(st,gt)k}Kk=1 of K pairs of st and gt; in testing, we
want to predict the “true” gt from a given input st.

The second task (pose tagging) is to predict the pose tag
Υ = (Υ1, . . . ,Υm) from a given st = (ST1, . . . , STm). In
training, we are given a training set of {(st,Υ)k}Kk=1 of K
pairs of st and Υ; in testing, we want to predict the tag values
Υ from a given input st.

The tag is actually a low dimensional manifold coordinate
of the pose. As for gaming applications, tag predication is
important for games even when perfect skeletons are available.
Both of the two tasks are performed to recover the pose from
a noisy initial estimation, so we categorize them into the tasks
of pose correction.

B. Normalized Skeleton Joints Coordinates

From the world coordinates, we want to have an intrinsic
and robust representation. Based on the n = 20 joints,
we show the kinematic skeleton template as displayed in
Fig. 3(a), which is a directed graph. Each joint is a node
of the graph. Given an ST = (x̂j , cj ; j = 1, . . . , n), we
compute its normalized coordinates for our problem, denoted
as H(ST ) = (rj , cj ; j = 1, . . . , n). Since x̂j denotes the
world coordinate, we normalize them to the template to
remove not only the global translation but also the variation in
individual body differences. We use the skeleton joint C. Hip
as the reference point, the origin, r1 = (0, 0, 0), and map the
other joints to the sphere as rj =

x̂j−x̂jo

∥x̂j−x̂jo∥2
where joint jo

is the direct predecessor of joint j on the skeleton (directed
graph).

The design of the transformed coordinates H(ST ) is moti-
vated by the kinematic body joint motion. H(ST ) observes a
certain level of invariance to translation, scaling, and individ-
ual body changes. We can actually drop r1 since it is always
on the origin. One could add other features computed on ST
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to H(ST ) to make it more informative but this could be a
topic of future research.

C. Joint-based Skeleton Correction

1) Joint offset inference: To perform skeleton correction
from a noisy input ST , instead of directly predicting the “true”
positions of the body joints, we infer the offsets between the
joints in the ST and those in the GT . This has its immediate
significance: when a person is facing the camera with no
occlusion, ST is actually quite accurate, and thus has nearly
zero difference to GT ; when a person is playing the game
in side view with severe occlusions, there is often a large
and inhomogeneous difference between ST and GT . This is
essentially a manifold learning problem. Certain clusters of
ST on the manifold can directly be mapped to, e.g. very low
values, if we would predict the offsets; predicting the direct
coordinates of GT however would have to explore all possible
ST in the data space.

Now we show how to compute the offsets between the joints
in ST = (x̂j , cj ; j = 1, . . . , n) and those in GT = (xj ; j =
1, . . . , n), where x̂j ,xj ∈ R3 are the world coordinates of
joint j in ST and GT , respectively. To ensure the scale
invariance of the offsets, skeletons are normalized based on the
default lengths of the skeleton edges in the template shown in
Fig. 3(a). First, we choose a set of stable joints JS = {Spine,
C. Shoulder, Head, L. Hip, R. Hip, L. Knee, R. Knee, L. Ankle,
R. Ankle }. We call them stable joints because other joints in
the ST , such as Hand and Wrist, are often occluded by the
human body, thus the skeleton edge lengths between them
are prone to errors. Given an ST , for each skeleton edge
between the stable joints and their direct predecessors, we
compute the proportion to the template skeleton edge length:
λ(j, jo) = ∥x̂j − x̂jo∥2/∥Tj − Tjo∥2, where Tj is the jth
joint for the template T (shown in Fig. 3), which is fixed
in this problem. Suppose that there is no error in the ST , then
for each j ∈ JS , λ(j, jo) is nearly identical. However, the
estimation error may result in a serious bias when computing
λ(j, jo). Although we only consider the stable joints, their
estimated positions may also be wrong. Therefore, we should
exclude the joints with large estimation error, and average
the skeleton edge lengths between the rest joints to obtain
a robust measure of the scale of the ST . To this end, the scale
proportion of the ST is formulated by

λ(ST ) =

∑
j∈JS

λ(j, jo) · δ(∥λ(j, jo)−
∑

λ(j,jo)
|JS | ∥1 ≤ th)∑

j∈JS
δ(∥λ(j, jo)−

∑
λ(j,jo)
|JS | ∥1 ≤ th)

,

(1)
where δ(·) is an indicator function which is a robust measure
to exclude the outliers and

th = 3

√√√√∑
j∈JS

(λ(j, jo)−
∑

λ(j,jo)
|JS | )2

|JS |
. (2)

Here we define the threshold th as the triple standard deviation
to exclude the outliers according to the 3-sigma rule. Finally,
the offset of a joint j between the pair of x̂j and xj is
computed as

∆j = (xj − x̂j)/λ(ST ), (3)

and D = (∆1, . . . ,∆n) for each skeleton of n joints. For the
entire sequence of m images, we have d = (D1, . . . ,Dm).
Note that we do not need to explicitly align the pair of ST
and GT , since they are obtained from the same depth image.

2) Learning the regression for joint offsets : In this section,
we discuss how to learn a regression function to predict the
offset to perform pose correction. We are given a training set of
S = {(st,gt)k}Kk=1 of K pairs of st and gt (for denotational
simplicity, we let K = 1 and thus k can be dropped for an
easier problem understanding). Using the normalization step
in Sec. IV-B, we obtain h(st) = (H(ST1), . . . ,H(STm))
where each H(ST ) = (rj , cj ; j = 1, . . . , n); using the
offset computing stage in Eq. 3, we compute the offset,
d = (D1, . . . ,Dm). Thus, our goal is to predict the mapping
h(st) → d.

We first learn a function to directly predict the mapping
fd : H(ST ) → D by making the independent assumption
of each pose. From this view, we rewrite the training set as
S = {(H(STi),Di)}mi=1.

Random forest [24]–[26] includes an ensemble of tree pre-
dictors that naturally perform data-partition, abstraction, and
robust estimation. For the task of regression, tree predictors
take on target values and the forest votes for the most possible
value. Each tree in the forest consists of split nodes and
leaf nodes. Each split node stores a feature index with a
corresponding threshold τ to decide whether to branch to
the left or right sub-tree and each leaf node stores some
predictions. Each leaf node stores a set of exemplars in a
partitioned feature subspace with similar target values. The
prediction of the tree is the abstraction of the target values of
the exemplars within one leaf node. Therefore, it’s proper to
apply random forest regression to predict the inhomogeneous
systematics bias.

Our objective is to learn a random forest regression func-
tion fd : H(ST ) → D. Following the standard greedy
decision tree training algorithm [3], [4], [15], each tree in
the forest is learned by recursively partitioning the train-
ing set S = {(H(STi),Di)}mi=1 into left Sl and right
Sr subsets according to the best splitting strategy θ∗ =
argminθ

∑
p∈{l,r}

|Sp(θ)|
|S| e(Sp(θ)), where e(·) is an error

function standing for the uncertainty of the set and θ is a
set of splitting candidates. If the number of training samples
corresponding to the node (node size) is larger than a maximal
κ, and

∑
p∈{l,r}

|Sp(θ
∗)|

|S| e(Sp(θ
∗)) < e(S) is satisfied, then

recurse for the left and right subsets Sl(θ
∗) and Sr(θ

∗),
respectively.

The selection of the error function e(·) is important for
learning an effective regressor. Here, we employ the rooted
mean squared differences:

e(S) =

√∑m
i=1 ∥Di −

∑m
i=1 Di

|S| ∥22
m

. (4)

In the training stage, once a tree t is learned, a set of training
samples Slf

t = {Dlf
i }|S

lf
t |

i=1 would fall into a particular leaf
node lf . Obviously, it is not effective to store all the samples in
Slf
t for each leaf node lf . Instead, we would do an abstraction

for the learning purpose. One choice is to store the mean
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D̄(lf) =
∑

i D
lf
i /|Slf

t | of the set Slf
t . One could store other

abstractions such as the histogram of Slf
t as well. In addition,

each tree t would assign a leaf node label Lt(H(STi)) for a
given H(STi).

In the testing stage, given a test example ST = (x̂j , cj ; j =
1, . . . , n), for each tree t, it starts at the root, then recur-
sively branches left or right. Finally, it reaches the leaf node
Lt(H(ST )) in tree t, then the prediction given by tree t is
Ft(H(ST )) = δ(lf = Lt(H(ST ))) · D̄(lf), where δ(·) is an
indicator function. The final output of the forest (T trees) is
a probability function:

PH(ST )(D) =
1

T

T∑
t=1

exp(−∥D− Ft(H(ST ))

hD
∥22), (5)

where hD is a learned bandwidth. The mean can be con-
sidered as another output of the learned regression function
fd(H(ST )) = EPH(ST )

[D] where EPH(ST )
[·] indicates the

expectation. The corrected skeleton is obtained by (if we
would use the fd(H(ST )) as the output)

CT = ST− + λ(ST ) · fd(H(ST )), (6)

where ST− = (x̂j ; j = 1, . . . , n) and the components in CT
are CT = (zj ; j = 1, . . . , n). In the experiments, we refer to
this method (using the fd(H(ST )) as the output) as RFR.

3) Regression cascade: In the recent work [27], an algo-
rithm named cascaded pose regression (CPR) is proposed,
which iteratively trains a series of regressors to approach
the ground truth. Inspired by CPR, we propose a regression
cascade (RFRC) here.

As described in Sec. IV-C2, we learn a regression function
fd : H(ST ) → D. Here, we rewrite it as

f
(0)
d : H(ST ) → D(0). (7)

Then we obtain the corrected skeleton CT (1) by

CT (1) = ST− + λ(ST ) · f (0)
d (H(ST )). (8)

Then we compute the normalized skeleton joint coordinates
H(CT (1)) and learn the second layer of regression function:

f
(1)
d : (H(ST ),H(CT (1))) → D(1), (9)

where D(1) is the offsets between CT (1) and GT computed by
the stage in Eq. 3. Then repeat the process mentioned above.
The (i+ 1)th layer of regression function is

f
(i)
d : (H(ST ),H(CT (i))) → D(i). (10)

The output skeleton is

CT (i+1) = CT (i) + λ(ST ) · f (i)
d (H(ST ),H(CT (i))). (11)

For consistency, we define CT (0) = ∅ and obtain

CT (i+1) = ST− + λ(ST ) ·
i∑

ι=0

f
(ι)
d (H(ST ),H(CT (ι))).

(12)
Fig. 5 shows an illustration for the process of the regression

cascade.

4) Temporal constraint: Taking the motion consistency into
account, we could use the temporal constraint to improve our
correction results. Our learned regression function outputs a
probability distribution as shown in Eq. (5), which can be
used to employ the temporal information. Given the estimated
skeleton sequence st = (ST1, . . . , STm), our goal is to obtain
h(st) → d, where d = (D1, . . . ,Dm), with the correspond-
ing corrected skeleton sequence ct = (CT1, . . . , CTm). To
meet the real time requirement, our approach follows a causal
model, i.e. the current prediction only depends on past/current
inputs/outputs. For the ith input estimated skeleton STi, its
offset is computed as

Di =

{
fd(H(STi)) if i = 1

arg min
D∈Rn×3

E(D|STi, STi−1,Di−1) otherwise ,

(13)
where E(·) is an energy function defined as

E(D|STi, STi−1,Di−1) = α · (− log(PH(STi)(D))) +

(1− α)∥ST−
i + λ(STi)D− (ST−

i−1 + λ(STi−1)Di−1)∥22, (14)

where α is a weight factor. We use coordinate descent to solve
Eq. 14. Finally, the corrected skeleton CTi is

CTi = ST−
i + λ(STi)Di. (15)

In the experiments, we refer to the random forest regression
and cascade methods under temporal constraint as RFRT and
RFRCT respectively. In the cascaded method, the temporal
constraint is only used in the regressor of the last layer and
the regressors of the former layers use the expectation as the
output.

D. Pose tag prediction

In this section we discuss how to learn a regression func-
tion to predict the tag of a pose. The learning process is
the same as what we did for the skeleton correction; so
we follow the notions in Sec. IV-C2 and IV-C4 except for
replacing the offset D by the tag value Υ. As stated in the
previous section: we are given a training set {(st,Υ)k}Kk=1

of K pairs of st and Υ (for denotational simplicity, we
let K = 1 and thus k can be dropped for easier problem
understanding). Using the normalization step in Sec. IV-B,
we obtain h(st) = (H(ST1), . . . , H(STm)), where each
H(ST ) = (rj , cj ; j = 1, . . . , n). Thus our objective is to
obtain h(st) → Υ, where st = (STi; i = 1, . . . ,m) and
(Υ = Υi; i = 1, . . . ,m). Similarly, a random forest regression
function to directly predict the tag only based on the individual
skeleton fυ : H(ST ) → Υ is also learned first. Here, each leaf
node in tree t also stores the mean tag values of the samples
falling into the leaf node. In the testing stage, given a test
example ST , the prediction Ft(H(ST )) given by tree t is
also computed similarly as in Sec. IV-C2. The final output of
the forest (T trees) is a regression in probability function:

PH(ST )(Υ) =
1

T

T∑
t=1

exp(−∥Υ− Ft(H(ST ))

hΥ
∥2), (16)
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Fig. 5. Illustration of the corrected human skeleton updated at each iteration.

where hΥ is a learned bandwidth. The mean is also con-
sidered as another output of the learned regression function
fυ(H(ST )) = EPH(ST )

[Υ].
A tag is a point on the manifold of the coherent motion,

therefore the temporal constraint would be much more useful
and effective in predicting the tag value. Our approach for tag
prediction is also a cause model. Given the estimated skeleton
sequence st = (ST1, . . . , STm), the goal is to obtain the tag
sequence (Υ1, . . . ,Υm). For the ith input estimated skeleton
STi, similarly Υi is predicted as:

Υi =

{
fυ(H(STi)) if i = 1

arg min
Υ∈[0,1]

E(Υ|STi,Υi−1) otherwise , (17)

where

E(Υ|STi,Υi−1) = α · (− log(PH(STi)(Υ))) +

(1− α)(Υ−Υi−1)
2, (18)

where α is the weight factor. The minimization of the above
energy can be done similarly as before.

E. Skeleton correction conditioned on pose tag

In this section, we demostrate a extension version of the
proposed regression based skeleton correction method. In do-
main specific actions, the tag is a global parameter of the pose.
As we stated before, to perform pose correction, the learned
regression function should naturally perform data-partition.
According to tags, pose data space is naturally partitioned into
several subspaces, therefore we can learn several conditional
probabilities over the tag space instead of learning a regression
function on the whole pose data space as we did in Sec. IV-C2.
The motivation is that conditional probabilities are easier to
learn since the regression trees do not have to deal with all
pose variations. This is inspired by Dantone’s work [28], which
learns conditional regression forests to detect facial feature.

Now we discuss how to learn a regression function condi-
tioned on pose tag to perform skeleton correction. For sim-
plicity, we assume each pose is independent, so the temporal
constraint is no longer considered here. Given the training
set S = {(H(STi),Di,Υi)}mi=1, recall that a regression
function for skeleton correction aims to learn the probability

PH(ST )(D) (Eq. 5), while a conditional regression forest mod-
els the conditional probability PH(ST )(D|Υ) and estimates
PH(ST )(D) by

PH(ST )(D) =

∫
PH(ST )(D|Υ)PH(ST )(Υ)dΥ, (19)

where PH(ST )(Υ) is modeled by Eq. 16.
To learn the conditional probability PH(ST )(D|Υ), we

discretize the tag space into several disjoint set Tk and then
split the training set into subsets Sk according to the tag space
discretization. Thus, Eq. 19 can be rewritten as

PH(ST )(D) =
∑
k

(PH(ST )(D|Tk)

∫
Υ∈Tk

PH(ST )(Υ)dΥ).

(20)
The conditional probability PH(ST )(D|Tk) is learned on each
of the training subsets Sk by Eq. 5. Take the mean as the output
of the forest learned on each training set, we can obtain the
output of the learned conditional forest:

fc(H(ST )) =
∑
k

(fdk
(H(ST )

∫
Υ∈Tk

PH(ST )(Υ)dΥ),

(21)
where fdk

(H(ST )) = EPH(ST ),Tk
[D] and recall that E[·]

indicates the expectation. Finally, the corrected skeleton is
obtained by

CT = ST− + λ(ST ) · fc(H(ST )). (22)

We refer to this conditional random forest regression method
as CRFR.

Since the correction process reduces the original estimation
error, learning the regression model on the corrected skeletons
instead should improve the accuracy of tag prediction. Then a
more accurate tag prediction model leads to a more accurate
conditional regression model for skeleton correction. This
naturally brings about a cascaded regression model, in each
layer of which we not only learn the difference between
the ground truth and the corrected skeletons obtained by
the previous layer, but also retrain the tag prediction model
based on the corrected skeletons. We follow the notation in
Sec. IV-C3 and the output of the (i+1)th layer of the cascaded
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model is obtained by

CT (i+1) = ST− + λ(ST ) ·
i∑

ι=0

f (ι)
c (H(ST ),H(CT (ι))),

(23)
where

f (ι)
c (H(ST ),H(CT (ι)))) =

∑
k

(f
(ι)
dk

(H(ST ),H(CT (ι)))∫
Υ∈Tk

PH(ST ),H(CT (ι))(Υ)dΥ), (24)

Similar as we trained skeleton correction model in Sec. IV-C3,
here we concatenate normalized skeleton joint coordinates of
the corrected skeletons H(CT (ι)) to H(ST ) to train the tag
prediction model of each layer: PH(ST ),H(CT (ι))(Υ). We refer
to the proposed cascaded conditional random forest regression
method as CRFRC.

V. EXPERIMENTAL RESULTS

In this section, we show the experimental results and give
the comparisons between alternative approaches, including
what is delivered in the current Kinect system. In the re-
mainder of this section, unless otherwise specified, we set
the parameters for learning random forest as: the number of
trees T = 50 and leaf node size κ = 5. The bandwidths hD

and hΥ and the weight factor α are optimized on a hold-out
validation set by grid search (As an indication, this resulted
in hD = 0.01m, hΥ = 0.03 and α = 0.5). We set the number
of the layers of regression cascade as L = 2.

A. Joint-based skeleton correction

To evaluate our algorithm, we show the performance on a
challenging data set. This data set contains a large number
of poses, 15, 815 frames in total, coming from 81 golf swing
motion sequences. Some pose examples are shown in Fig. 3.
We select 19 sequences containing 3, 720 frames as the
training data set. The rest 12, 095 frames are used for testing.

1) Error Metrics: Given a testing data set {(STi, GTi)}mi=1,
we obtain the corrected skeletons {CTi; i = 1, . . . ,m}. We
measure the accuracy of each corrected skeleton CT =
(zj ; j = 1, . . . , n) by the sum of joint errors (sJE) GT =
(xj ; j = 1, . . . , n): ε =

∑
j ∥zj − xj∥2. To quantify the

average accuracy on the whole testing data, we report the mean
sJE (msJE) across all testing skeletons:

∑
i εi/m (unit: meter).

2) Comparisons: In this section, we give the comparison
between the methods for joint-based skeleton correction.
Current Kinect approach. To illustrate the difficulty of the
problem, we compare with the approach in the current Kinect
system. The current Kinect system for skeleton correction is
complex, which employs several strategies such as temporal
constraint and filtration. The main idea of the approach is
nearest neighbor search. For a testing ST , The approach
searches its nearest neighbor in the estimated skeletons in the
training set. Then the ground truth of the nearest neighbor
is scaled with respect to ST to be the corrected skeleton of
ST . The details of this system is unpublished. We refer to
the current approach in Kinect system as K-SYS in the rest of

Fig. 6. Comparison with several methods on our testing data set. The
quantitative results are illustrated in the left-hand bar graph and the accurate
values are listed in the right-hand table. The baseline is the msJE of the input
testing estimated skeletons.

paper. On the whole testing set, K-SYS achieves 2.0716 msJE,
while RFR achieves 1.5866. We illustrate some examples of
the corrected skeletons obtained by K-SYS and our algorithm
in Fig. 7. The skeletons obtained by our algorithm are more
similar to the ground truths.
Regress the absolute joint position. To show the significance
of learning the offsets between joints in ST and GT , we
also give the result by directly predicting the absolute joint
position by random forest regression (RFRA). To learn the
absolute position, for each GT = (xj ; j = 1, . . . , n) in
the training set S = {(STi, GTi)}mi=1, we translate the
C. Hip x1 to (0, 0, 0) to align them. The absolute joint
position of each GT = (xj ; j = 1, . . . , n) is obtained
by x̃j = (xj − x1)/λ(GT ). Then a regression function
f̃ : H(ST ) → (x̃1, . . . , x̃n) is learned as the process in
Sec. IV-C2. Given a testing ST = (x̂j ; j = 1, . . . , n), the joint
positions of the corrected skeleton CT = (zj ; j = 1, . . . , n)
are obtained by CT = λ(ST )f̃(H(ST )). Finally, the C. Hip
z1 of the obtained CT is translated to x̂1 to align the CT
with the ST . As shown in Fig. 6, RFRA does not perform as
well as RFR.
Other regression algorithms.We also apply other regression
algorithms to joint-based skeleton correction, such as Gaussian
process regressor [21] (GPR) and support vector regressor [22]
(SVR). The implementation of GPR was taken from the
GPML toolbox [29], which learns the parameters of the mean
and covariance functions of Gaussian processes automatically.
GPR achieves 1.7498 msJE. Fig. 6(a) shows the apparent
advantage of RFR over GPR. We employ the implementation
of SVR taken from the package of LIBSVM [30]. We utilize
radial basis function (RBF) kernel for SVR and obtain 1.6084
msJE. The result obtained by SVR is also worse than RFR.
Besides, to train the model of SVR, quite a few parameters
need to be tuned.

We illustrate the performances of all the methods mentioned
above in Fig. 6. The baseline is the msJE of the input estimated
skeletons, which is 2.3039 msJE. RFRT, RFRC and RFRCT
achieve 1.5831, 1.5766 and 1.5757, respectively. The results
demonstrate that both performing in the way of cascade and
adding temporal constraint can help improve the performance.
Different joints are under occlusions of different degrees,
e.g. the head is rarely under occlusion and the elbows are
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Fig. 7. Examples of the human skeletons. In each example we see the GT, the ST, the CT obtained by NNS and the CT obtained by RFRCT. The CTs
obtained by RFRCT are more similar as the GTs.

Fig. 8. The error of each joint. Baseline is the mJE of the initial estimated skeletons.

often occluded by the torso. To better illustrate the correction
performance, we compute each joint error (JE) and report the
mean JE (mJE) of each joint across all testing skeletons in
Fig. 8. Baseline is the mJE of the initial estimated skeletons.
Compared to the baseline, our approach decreases the errors
caused by occlusion significantly. Generally, our approach
decreases 44% and 16% error with and without occlusion
respectively. Compared to K-SYS, the correction performances
of all joints are better.

3) Parameter Discussion: We investigate the effects of
several training parameters on regression accuracy. As shown
in Fig. 9(a), the mean sJE decreases as the number of trees
increases. We also show the performance by varying the leaf
node size. The tree depth is controlled by the leaf node size.
The smaller is the leaf node size, the deeper is the tree. As
shown in Fig. 9(b), the performance of RFR would decrease
when setting larger leaf node size. However, encouragingly,
RFRC even obtains better result when setting larger leaf node
size. The is because setting larger leaf node size reduces
the risk of over-fitting of each layer which leads to more
performance improvement when using the cascade way.

Fig. 9. Training parameters vs. performance on joint-based skeleton correc-
tion. (a) Number of trees. (b) Leaf node size.

B. Pose tag prediction

To evaluate our method for pose tag prediction, we collect
two data sets. One contains 185 golf swing motion sequences,
the other contains 104 football throwing motion sequences
(mocap data is unnecessary here, so it’s convenient to collect
more data). A typical motion sequence of football throwing
is shown in Fig. 10. Note that, mocap data is not collected
for this task, so we illustrate football throwing motions by the
initial estimated skeletons. We annotate all the sequences and
test our approach on the two data sets separately. For the golf
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Fig. 10. A typical motion sequence of football throwing.

Fig. 11. Comparison with several methods on the golf swing data set. (a)
The quantitative results obtained by several methods. (b) Accuracy versus size
of training data set.

Fig. 12. Comparison with several methods on the football throwing data set.
(a) The quantitative results obtained by several methods. (b) Accuracy versus
size of training data set.

swing data set, 37 sequences containing 3, 066 frames are used
for training; the rest 148 sequences containing 12, 846 frames
are used for testing. For the football throwing data set, 21
sequences containing 1, 277 frames are used for training; the
rest 83 sequences containing 4, 108 frames are used for testing.
In addition, we also did various folds of cross-validation to test
the stability of our approach.

1) Error Metrics: Given the testing data set
{(STi,Υi)}mi=1, where Υi is the annotated tag of STi,
we obtain the predicted tags {Υ̂i}mi=1. The tag prediction
accuracy on the whole testing data set is quantified by the

rooted mean square (RMS) distance:
√

Σm
i=1(Υ̂i −Υi)2/m.

2) Comparisons: In this section, we give the comparison
between the methods for tag prediction.
Current Kinect approach. The current approach in Kinect
system (K-SYS) for tag prediction also contains many details
such as imposing temporal constraint and filtering. The main
idea of K-SYS is also nearest neighbor search. For a testing
ST , K-SYS searchs its nearest neighbor in training set, then
the predicted tag of its nearest neighbor is taken as the tag of
the ST . On the football throwing data set, K-SYS achieves

0.1104 RMS, which is worse than RFR (0.0976 RMS). RFRT
is the best, which achieves 0.0918 RMS. On the golf swing
data set, K-SYS achieves 0.1376 RMS, which is even better
than RFR (0.1406 RMS). The reason may be the golf swing
data set is more challenging (there are much more occlusions),
so the prediction from a single frame is more inaccurate. In
this case, the temporal constraint plays a more important role
in tag prediction. Our algorithm RFRT significantly improves
RFR, it achieves 0.1164 RMS. We also compare with K-SYS
by varying the size of training data set. We divide each data
set into 10 folds with equal sizes, then randomly select Nt

folds for training and use the rest for testing. We compute
the mean and the standard deviation of the RMS distances
obtained by repeating the random selection for 5 times. The
results for Nt = 4, 6, 8 using 10 trees on the golf swing data
set and the football throwing data set are shown in Fig. 11(b)
and Fig. 12(b) respectively.
K-nearest neighbors search. To show the advantage of
random forest in data abstraction and robust estimation,
we compare with K-nearest neighbors search (KNNS). Giv-
en a testing sequence (ST1, . . . , STm), for each STi(i ∈
(1, . . . ,m)), K nearest neighbors are searched from the
training set, and the tags of the neighbors are obtained:
ΥK = (Υk; k = 1, . . . ,K). Then we obtain the probability
distribution PH(STi)(Υ) = 1

K

∑K
k=1 exp(−∥Υ−Υk)

hΥ
∥2). Then

considering the temporal consistency, using the method in
Sec. IV-D, the optimal value is searched from the distribution
PH(STi)(Υ) as the predicted tag of STi. KNNS only achieves
0.1451 RMS and 0.1311 RMS on the golf swing data set and
the football throwing data set, respectively.
Other regression algorithms. We apply GPR and SVR to
tag prediction, which achieve 0.1563 RMS and 0.1426 RMS
on the golf swing data set respectively and achieve 0.1208
RMS and 0.1174 RMS on the football throwing data set
respectively. The tag is a real value ranging from 0.0 to 1.0, so
we also apply logistic regression (LR) [23] to tag prediction.
However, it only achieves 0.1806 RMS and 0.1322 RMS on
our two data sets, respectively. Unlike RFR, which benefits
from optimization under the temporal constraint, GPR, SVR
and LR have no such advantage.

We illustrate the results of tag prediction on our two data
sets in Fig. 11(a) and Fig. 12(a), respectively. Fig. 13 and
Fig. 14 shows tag curves of four example sequences from the
two data sets, respectively. The horizontal and vertical axes of
the tag curve are the frame index of the sequence and the tag
value, respectively. The curves obtained by RFRT (black) fit
the annotated curves (green) best.

3) Parameter Discussion: The effects of the training pa-
rameters, including the number of trees and leaf node size, on
tag prediction accuracy is shown in Fig. 15. Generally, using
more trees and setting smaller leaf node size help improve the
performance.

C. Skeleton correction conditioned on pose tag

Not all the frames in the data set used in Sec. V-A are
annotated with tag values, so we select the annotated frames
from it which form a subset to evaluate the conditional random
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Fig. 13. The tag curves of four example sequences from the golf swing
data set. In each example, we show the annotated curve (green) and those
obtained by K-SYS (red), RFR (blue) and RFRT (black). The black curves
fit the green best.

Fig. 14. The tag curves of four example sequences from the football throwing
data set. In each example, we show the annotated curve (green) and those
obtained by K-SYS (red), RFR (blue) and RFRT (black). The black curves
fit the green best.

Fig. 15. Training parameters vs. performance on tag prediction. (a) Number
of trees. (b) Leaf node size.

forest regression method. The subset contains 6, 452 frames in
total, from which 2, 352 are randomly selected as the training
set and the rest are used as the testing set. To train the
conditional random forest, we uniformly partition the tag space

Fig. 16. Comparison with several methods on the subset formed by annotated
frames. The quantitative results are illustrated in the left-hand bar graph and
the accurate values are listed in the right-hand table. The baseline is the msJE
of the input testing estimated skeletons.

Fig. 17. Examples of the human skeletons. In each example we see the GT,
the ST, the CT obtained by RFRC and the CT obtained by CRFRC. CRFRC
further corrects the estimated skeletons to approach the ground truth.

into three intervals, i.e. [0.0 1/3], [1/3 2/3] and [2/3 1.0], then
split the training set into three according to tags.

1) Comparisons: In this section, we mainly compare the
conditional regression method to the standard one. As show
in Fig. 16, CRFR indeed enhances the performance of RFR
and RFRC, and CRFRC further decreases the error, which
achieves 1.9764 msJE. We also illustrate some examples of
the corrected skeletons obtained by RFRC and CRFRC in
Fig. 17 for comparison. We can see from this figure that
CRFRC further corrects the estimated skeletons to approach
the ground truth. This is because the incorporation of tags
leads to a more accurate data partition, which provides more
robust bias prediction. Note that, the testing error of this
subset is generally larger than the original whole data set.
This is because the action motions of the annotated frames are
more drastic than the unannotated ones and severe occlusions
usually exist in the annotated frames (see the significant error
in the STs in Fig. 17). For clarity, we also list the baseline
and the result obtained by K-SYS on this subset in the right-
hand table in Fig. 16. Recall that baseline is the msJE of
the initial estimated skeletons. The baseline of this subset
(3.2374 msJE) is much worse than the one of the original
whole data set (2.3039 msJE) also shows the its difficulty. Our
methods significantly decrease the joint errors on this subset
and achieve much higher performance than K-SYS.

2) Parameter Discussion: There is a new parameter in-
troduced in the proposed conditional regression model: the
number of tag intervals (we always partition the tag space
uniformly). We vary the number of tag intervals and the results
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Fig. 18. Joint error versus the number of tag intervals.

TABLE I
THE RUNTIME OF OUR APPROACH ON XBOX. THE RUNTIME IS MEASURED

BY MILLISECOND PER FRAME. FOR THE TWO TASKS, JOINT-BASED
SKELETON CORRECTION AND TAG PREDICTION, WE REPORT THE RUNTIME

OF RFR AND RFRT, RESPECTIVELY.

Number of trees 10 20 30
Skeleton correction (RFR) 6.6ms 11.8ms 17.2ms

Tag prediction (RFRT) 5.9ms 8.8ms 11.8ms

are shown in Fig. 18. Fig. 18 depicts that higher performance
will be obtained by partitioning the tag space into more
disjoint subsets.

D. Runtime

Our approach is real-time and can be directly embedded
into the current Kinect system. We give the runtime of our
approach on Xbox in Tab. I.

E. Facial landmark correction

Our regression based correction method is general, it’s
applicable to correct other estimation/detection errors involved
from other sensors. To show this, we apply our method to
improve the accuracy of the positions of facial landmarks
detected by the method in [31]. Facial landmarks detection is a
essential step in face recognition. The method in [31] detects
the facial landmarks by applying a generative model of the
positions of landmarks combined with a discriminative model
of the appearances of landmarks. Generally, when detecting
landmarks on a frontal face, the detection error is small; how-
ever, when detection is performed on a lateral face, the error is
much larger. Therefore, our method, to learn a inhomogeneous
bias function to perform correction is also suitable here. Given
a face image I , we employ the facial landmarks detector in
[31] to obtain the initial positions Ŝ(0) of n = 9 landmarks,
including 4 eye corners, 3 nose corners and 2 mouth corners.
To apply our regression based method to correct the errors
introduced in landmarks detection, we first compute the SIFT
descriptor [32] at each landmark, which lead to a n × 128
dimensional face descriptor H(I, Ŝ(0)). Then a random forest
regression function f : H(I, Ŝ(0)) → ∆(0) is learned as the

process in Sec. IV-C2, where ∆(0) is the difference between
Ŝ(0) and the ground truth S. To ensure this difference is
scale invariant, we normalized the coordinates of landmarks
by the transforms estimated by least square fit according to
the default positions of landmarks. The corrected positions of
landmarks are obtained by Ŝ(1) = Ŝ(0) + f(H(I, Ŝ(0))). The
cascaded way can be also applied as the same as in Sec. IV-C3:
Ŝ(i+1) = Ŝ(0) +

∑i
k=0 f(H(I, Ŝ(0))), H(I, Ŝ(k))).

We follow the error metric proposed in [33] to evaluate the
accuracy of the positions of landmarks: 1

nde

∑n
i=1 δi, where n

is the number of landmarks, δi is the Euclidean point to point
error for each individual landmark and de is the ground truth
distance between the left and right eyes.

We test our method on two publicly data sets, the first one
is LFPW [34], which consists of 1, 432 faces from images
downloaded from the web using simple text queries on sites
such as google.com, flickr.com, and yahoo.com. This data
set is quite challenging due to the large variations of poses,
lighting conditions, and facial expressions contained in its face
images. The face images are taken under wild condition, and
have already been divided into a training set and a testing
set, which contain 1, 132 and 300 face images respectively.
Due to copyright issues, this data set only provides the image
URLs. Some URLs are not available, so we only obtain 832
training face images and 231 testing testing face images. We
learn the regression function on the training set and apply it
to the testing set. In Tab. II, we report the landmarks errors
of the correction results obtained by RFRC (L = 1, 2, 3) on
the testing set of LFPW. The baseline is the landmarks error
of the initial detection result obtained by the method in [31].
Tab. II shows that our method indeed improves the accuracy of
facial landmark localization, it reduces about 20% localization
error. Some selected correction results from LFPW are shown
in Fig. 19.

The other is BioID data set [35], which consists of 1521
images of 23 different persons with a larger variety of illu-
mination, background and face size. BioID does not provide
training and testing sets, following [34], [36] we directly test
the correction function learned on the training set of LFPW on
the whole BioID data set. Note that this increases the difficulty
of correction, since there are considerable differences in the
viewing conditions of these two data sets. BioID does not
provide the ground truths for the three nose corners, so we
only give the correction results of the other 6 landmarks. As
shown in Tab. III, our method RFRC (L = 1, 2, 3) can also
improve the accuracy of facial landmark localization on BioID
significantly even applying the regression function learned on
the training set of LFPW, it reduce about 26% localization
error. In Fig. 20, we show some selected correction results
from BioID [35].

VI. CONCLUSION

We have presented a new algorithm for pose correction
and tagging from the initially estimated skeletons from Kinect
depth images. Our exemplar-based approach serves a promis-
ing direction and we highlighted the importance of learning
the inhomogeneous systematic bias. We also emphasize that
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TABLE II
THE RESULTS OF LANDMARK DETECTION AND CORRECTION ON LFPW [34]

Baseline [31] RFRC, L = 1 (RFR) RFRC, L = 2 RFRC, L = 3
Landmarks error 0.0695 0.0571 0.0562 0.0556

Fig. 19. Selected results from LFPW [34]. In each image, the green, red and blue points are the ground truth, detection result [31] and correction result,
respectively.

TABLE III
THE RESULTS OF LANDMARK DETECTION AND CORRECTION ON BIOID [35]

Baseline [31] RFRC, L = 1 (RFR) RFRC, L = 2 RFRC, L = 3
Landmarks error 0.0796 0.0590 0.0586 0.0583

Fig. 20. Selected results from BioID [35]. In each image, the green, red and blue points are the ground truth, detection result [31] and correction result,
respectively.

learning the bias conditioned on a global parameter leads to a more accurate pose correction model. Performing cas-
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caded regression and imposing the temporal consistency also
improves pose correction. Our experimental results for both
pose joints correction and tag prediction show significant
improvement over the contemporary systems. Our regression
based correction method is general, it’s applicable to improve
the accuracy of other detection/estimation systems.

Future works may include designing more powerful skeletal
features, employing motion analysis techniques for pose cor-
rection and recognizing actions based on the corrected poses.
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