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a b s t r a c t 

Bag of Shape Features (BoSF), such as Bag of Contour Fragments (BoCF) and Bag of Skeleton-associated 

Contour Parts (BoSCP), derived from the well-known Bag of Features (BoF), is an effective framework for 

shape representation. The feature pooling in this framework is a critical step, while either max pooling 

or average pooling is not a learnable process. In this paper, we aim at learning a pooling function which 

is adaptive to the input shape features instead. Towards this end, we formulate our pooling function as a 

weighted sum of max pooling and average pooling, where the weight is expressed by an activation func- 

tion of the input shape features. To automatically learn this weight, the output of the pooling function is 

fed into a SVM classifier and they are trained jointly to minimize a shape classification loss. Experimental 

results on several standard shape datasets demonstrate the effectiveness of the proposed learned pooling 

function, which can achieve considerable improvements compared with both BoCF and BoSCP. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Shape plays an important role in object recognition. The ob-

ects shown in Fig. 1 have lost their brightness, color and tex-

ure information, however we can still recognize their categories

y their silhouettes. In other words, shape can be a stable feature

epresentation which is hardly influenced by object color, texture

nd light conditions. Due to these advantages, shape recognition

s a very important part in the field of object recognition for a

ong time. shape recognition is usually considered as a classifica-

ion task which aims at predicting the given testing shape’s cat-

gory label as we have trained a classification model based on a

et of training shapes as well as labels. The main obstacle in shape

ecognition is how to form a reliable shape representation which

s invariant to local shape deformation while discriminative to dif-

erent shape classes. 

A shape generally can be represented by its contour, a closed

urve, or its skeleton, a graph. To form a reliable shape rep-

esentation, Bag of Shape Features (BoSF), such as Bag of Con-

our Fragments (BoCF) [36] and Bag of Skeleton-associated Contour

arts (BoSCP) [29] , derived from the well-known Bag of Features

BoF) [13,31] , converts a shape contour or a skeleton into an in-

ormative feature vector, avoiding the contour points matching or
∗ Corresponding author. 
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keleton graph matching processes in traditional shape recognition

ethods [8,20] . The BoSF feature vector is formed by encoding and

ooling the local contour fragment features. The pooling function

sed in BoSF is a fixed max pooling function, but as investigated in

19] , learning a pooling function adaptive to input data can benefit

erformance. 

In the current literature, popular pooling functions include max,

verage, and stochastic pooling. Some more complex pooling op-

ration, such as spatial pyramid pooling, is designed to deal with

ifferent resolution images. In this paper, we propose to learn a

ooling function which is adaptive to the input shapes features in

he BoSF framework. More specifically, we formulate our pooling

unction as a weighted sum of max-pooling and average-pooling,

here the weight is expressed by an activation function of the in-

ut shape features. The output of the pooling function is fed into a

VM classifier [12] and the pooling function and the classifier can

e trained jointly to minimize a shape classification loss. 

Our method is inspired by [19] , which learns pooling func-

ion in a deep convolutional neural network. The input data of the

ooling function are ordered and have a fixed length. While in our

roblem, the input data of the pooling function are responses on

 visual word of a set of shape features, which are unordered and

ave unfixed lengths. To address this issue, we quantize the re-

ponses on each visual word into a fixed number of bins. Then the

eight is learned based on the quantization histograms. 

The core contribution of the paper is the proposal of the learn-

ble pooling function in the BoSF framework, where we not only

https://doi.org/10.1016/j.patrec.2018.02.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.02.024&domain=pdf
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Fig. 1. Human biological vision system is able to recognize these object without 

any appearance information (brightness, color and texture). 
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provide an effective way to convert the shape features into a

proper input format for the pooling function, but also describe how

to learn the pooling function jointly with a shape classifier. 

This paper extends our preliminary work [28] by the follow-

ing contributions: (1) Verifying the effectiveness of the proposed

learned pooling function on BoSCP [29] . (2) Discussing some pos-

sible alternative designs for the components in our framework. (3)

Achieving the state-of-the-art shape classification performance on

several standard shape datasets. 

The rest of this paper is organized as follows. We review the re-

lated works in Section 2 . Then, in Section 3 we will introduce the

details of our method, i.e., how to learn pooling function in the

BoSF framework to recognize shapes. Next, we evaluate the pro-

posed method on several popular shape benchmarks in Section 4 .

Finally, we will give a conclusion in Section 5 . 

2. Related work 

Shape recognition has been widely studied in the past decade.

In early age, most methods aimed at extracting informative and

robust shape descriptors. There are two main types of methods,

one is contour-based, including curvature scale space (CSS) [23] ,

multi-scale convexity concavity (MCC) [1] , triangle area representa-

tion (TAR) [2] , hierarchical procrustes matching (HPM) [22] , shape-

tree [14] , contour flexibility [37] . Some well-known contour based

shape descriptors need to be mentioned. Belongie et al. [8] in-

troduced a shape descriptor named shape context (SC) which de-

scribes the relative spatial distribution (distance and orientation)

of landmark points sampled on the object contour around fea-

ture points. Ling and Jacobs [20] used inner distance to extend

shape context to capture articulation. These methods extracted lo-

cal deformation invariant features at each point, and then match

them by using sequence matching, such as Dynamic Time Warp-

ing (DTW) [25] and Optimal Subsequence Bijection (OSB) [5] . The

other is skeleton-based, among which the shock graph and its vari-

ants [21,27] are most popular, which are abstracted from skeletons

by designed shape grammar. Bai and Latecki [5] proposed a simple

but informative skeleton-based shape descriptor named skeleton

paths, which achieves promising shape recognition results. How-

ever, shape recognition by these two types of descriptors need

cyclic sequence matching or graph matching, which is time con-

suming. 

Bag of Words(BoW) has been widely used in image retrieval

and classification as well as in 3D shape classification and re-

trieval tasks [3] . Tabia and Laga [32] extended the standard Bag

of Words(BoW) and utilized multiple vocabulary coding for 3D

retrieval with Bag of Covariances. Ramesh et al. [24] adopted

coding-based frameworks as well as invariant features and con-

textual in Bag-of-words model for shape classification. Wang et al.

[35] constructed middle-level global descriptor with Bag of Fea-

tures which proved effective for high-level feature learning. In-

spired from the well-known Bag of Features [13,31] framework,

Wang et al. [36] proposed Bag of Contour Fragments (BoCF). They

used Local-constraint linear coding (LLC [34] ) to encode local con-

tour fragment features and used max pooling to generate a com-

pact feature vector, which would be then fed into a SVM classi-

fier for shape classification. Since BoCF can convert a shape into

a feature vector, using this representation for shape recognition is
ery efficient. Many researchers followed this coding based frame-

ork. Bai et al. [4,7] applied this framework to both 2D and 3D

hape retrieval. Shen et al. [30] proposed a skeleton based mid-

evel representation named Bag of Skeleton Paths (BoSP) and con-

atenated the BoCF and BoSP for shape recognition. The weights

etween BoCF and BoSP are automatically learned by a SVM clas-

ifier [12] . Shen et al. [29] associates skeletal information with a

hape contour on low-level by making full use of the natural cor-

espondence between a contour and its skeleton. We also use this

ramework in our method, but the pooling function is learnable

nd jointly learned with the SVM classifier in our method. 

The pooling operation has played a central role in many

mportant frameworks, such as convolutional neural networks

CNNs) [18] and deep belief nets (DBN) [15] , contributing to invari-

nce to data variation and perturbation. However, pooling opera-

ions have been little revised beyond the current primary options

f average, max, and stochastic pooling [10,11,38] ; this despite indi-

ations that e.g. choosing from more than just one type of pooling

peration can benefit performance [26] . Lee et al. [19] proposed to

eneralize the pooling function in a Convolutional Neural Network

CNN). Instead of combining these two pooling functions, they in-

estigated how to combine average pooling and max pooling by a

eight learned from the input data of a pooling layer. Our method

s inspired from [19] , but differs in frameworks (BoF vs CNN) and

nput data structures (responses of unfixed lengths and orders vs

esponses of the fixed length and order). 

. Methodology 

In this section, we detail the proposed method for shape recog-

ition. First, we briefly review the Bag of Shape Features frame-

ork. Then, we introduce the proposed learnable pooling function.

inally, we discuss how to jointly learn a pooling function and a

hape classifier. 

.1. Bag of Shape Features framework 

Bag of Shape Features (BoSF), such as Bag of Contour

ragments (BoCF) [36] and Bag of Skeleton-associated Contour

arts (BoSCP) [29] , derived from the well-known Bag-of-Features

BoF) [13,31] , is an effective framework for shape representation.

n this framework, shape features, such as shape contour fragments

r skeleton parts, are first converted into informative feature vec-

ors, which are then encoded by a learned codebook and passed to

 pooling function to form a shape representation. 

In Bag of Contour Fragments (BoCF) [36] , a shape F is repre-

ented by a set of meaningful contour fragments G C(F ) = { g pq , p � =
, p, q ∈ { 1 , . . . , T }} , where p, q are two critical points [16] and T is

he number of the critical points. For each contour fragment g pq ,

he shape context (SC) [8] descriptor is used to represent it, which

esults in a feature vector x pq . 

In Bag of Skeleton-associated Contour Parts (BoSCP) [29] , a

hape F is represented by its contour C ( F ) and skeleton S ( F ). Simi-

ar to SC descriptor, a shape part set G C ( F ) is build. G C(F ) = { g pq , p � =
, p, q ∈ { 1 , . . . , T }} . Associated object thickness value can be com-

uted by each point on the contour C ( F ) and its correspond points

n the skeleton S ( F ). Given a contour part, we uniformly sample n

oints on it, then for a given reference contour point r p , we de-

cribe its descriptor by the distribution of relative differences to

he n sampled points on Euclidean distance, orientation and associ-

ted object thickness value, which is described a coarse histogram

 p . Finally, the SSC descriptors of the reference points on a contour

art g pq are concatenated to form the descriptor vector x pq . 

After extracting the features in the Bag of Shape Fea-

ures framework, each shape is represented by the shape con-

ext(SC) or skeleton-associated shape context(SSC) descriptors. To
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Fig. 2. The pipeline of our method for shape recognition. (a) is an input shape. (b) are the features from the input shape. (c) are the shape codes corresponding to the 

shape features in (b). In (d), the red histogram (top left), the blue histogram (bottom left) and the mixed histogram (right) stand for the shape representation obtained 

by max pooling, average pooling and our learnable pooling respectively. Our pooling function can be learned jointly with the classifier (See the red feedback arrow). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ncode shape parts, we adopt local-constrained linear coding

LLC) [34] scheme, as it has been proved to be efficient and ef-

ective for image classification. Codebook construction is usually

chieved by unsupervised learning, such as k-means. Given a set of

ontour parts randomly sampled from all the shapes in a dataset

s well as their flipped mirrors, we apply k-means algorithm to

luster them into K clusters and construct a codebook B = (b j ; j =
 , . . . , K) . LLC additionally incorporates locality constraint, which

olves the following constrained least square fitting problem: 

in 

c ′ i 
|| x pq − B 

′ c ′ i || , s.t. 1 

T c ′ i = 1 , (1)

here B 

′ is the local bases formed by the k nearest neighbors of

 pq and c ′ i ∈ R 

k is the reconstruction coefficients. The code of x pq 

ncoded by the codebook B , i.e. c ∈ R 

k , can be easily converted

rom c ′ i by setting the corresponding entries of c i are equal to c ′ i ’s
nd other are zero. After such an encoding process, each feature

 pq of shape F is encoded into a shape code c i = (c i j ; j = 1 , . . . , K) T ,

here K is the codebook size. Assuming that there are N s shape

eatures extracted from the shape F , where N s is the number of the

ontour segments in G C ( F ) . After LLC encoding, a set of shape codes

 c i } N s i =1 
is obtained, where c i is the shape code of the i th shape fea-

ure in F . 

To form an informative and compact representation v = (v j ; j =
 , . . . , K) T for the shape F , a pooling function is applied to { c i } N s i =1 

.

he shape codes are pooled into a compact shape feature vec-

or by Spatial Pyramid Matching (SPM). SPM is usually used to

ncorporate spatial layout information when pooling the image

odes. It divides an image into different subregions and each one

ooled respectively and has been employed to enhance the perfor-

ance [33] . Two pooling functions are commonly used. One is max

ooling: 

 j = f max ({ c i j } N s i =1 
) = max 

i ∈{ 1 , ... ,N s } 
c i j , (2)

he other is average pooling: 

 j = f avg ({ c i j } N s i =1 
) = 

1 

N s 

N s ∑ 

i 

c i j , (3)

.2. Bag of Shape Features with a learned pooling function 

Now we propose our method for shape recognition. We adopt

he Bag of Shape Features (BoSF) framework. The pooling function

sed in BoSF is max pooling, but it is difficult to draw a conclu-

ion that max pooling dominates average pooling. Here, instead

f directly using max pooling or average pooling to obtain the fi-

al shape representation, we propose to learn a pooling function
ia combining max and average pooling. We formulate our pooling

unction as a weighted sum of max and average pooling, where the

eight is expressed by an activation function of the input shape

eatures. Thus, our pooling function is adaptive to the input shape

odes and can be jointly learned with a shape classifier. 

The process of our learnable pooling function is shown as in

ig. 2 (d). We will introduce the detail about our learnable pooling

unction next. 

A straightforward way to combine max and average pooling is

o sum their results by a weight: 

 j = α j f max ({ c i j } N s i =1 
) + (1 − α j ) f avg ({ c i j } N s i =1 

) , (4)

here αj is a weight factor. Rather than using a fixed αj , we would

ike to learn a data-adaptive αj . In [19] , such a weight is expressed

y a nonlinear transformation of the input data. However, the input

ata should be ordered and have a fixed length. Unfortunately, our

nput data is a set of shape codes, which are unordered and may

ave different numbers from one shape to another. To address this

ssue, we propose to quantize the shape codes corresponding to

ach visual word into a fixed number of bins. More specifically,

iven { c i j } N s i =1 
, which represents the shape codes corresponding to

he j th visual word in the codebook, our goal is to quantize them

nto M bins to form a M -dimensional histogram. As we know that

ach c ij satisfies that 0 ≤ c ij ≤ 1, we divide the interval (0, 1] into

 uniform bins, i.e., (0 , 1 /M] , (1 /M, 2 /M] , . . . , (1 − 1 /M, 1] . Then we

ount the number of nonzero values fall in each bin correspond

o the j th visual word, which results in a quantization histogram,

enoted by h j = (h jm 

; m = 1 , . . . , M) T , where 

 jm 

= # { c i j ∈ bin (m ) } , i ∈ { 1 , . . . , N s } , (5)

nd 

in (m ) = ( 
1 

M 

(m − 1) , 
m 

M 

] , m ∈ { 1 , . . . , M} . (6)

y this way, we convert the unordered and unfixed-length shape

odes into ordered and fixed-length quantization histograms. Fig. 3

hows an example to quantize two set of shape codes computed

rom two different shapes. The numbers of shape codes from these

wo sets are different ( N 1 and N 2 respectively), while the formed

uantization histograms have the same number of bins ( M = 5 ). h j 

s another representation of shape codes { c ij }, which reflects how

trong the shape codes response is on the j th visual word. We can

xpress the αj in Eq. (4) by α j = σ (w 

T 
j 
h j ) , where σ ( · ) is a sig-

oid activation function and w j = (w jm 

; m = 1 , . . . , M) T is a trans-

ormation vector. Now we can rewrite Eq. (4) by 

 j = σ (w 

T 
j h j ) f max ({ c i j } N s i =1 

) + [1 − σ (w 

T 
j h j )] f avg ({ c i j } N s i =1 

) . (7)

Finally, the shape representation of shape F obtained by our

earnable pooling function is: v (F ) = (v , v , . . . , v ) T . 
1 2 K 
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Fig. 3. Shape code quantization. (a) The shape codes computed from two different 

shapes, whose numbers are N 1 and N 2 respectively. (b) The quantization histograms 

of the shape codes in (a). Each row shows the shape codes and their quantization 

histograms corresponding to one visual word. The shape codes are quantized into 

M = 5 bins uniformly in the interval (0, 1]. 
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3.3. Joint learning of a pooling function and a classifier 

Since h j is directly computed from the input of our pooling

function, i.e., { c i j } N s i =1 
, αj is adaptive to input data . So the transfor-

mation vector w j can be learned from the data. Feeding the output

of our pooling function into a classifier, e.g., SVM [12] , the transfor-

mation vector w j and the classifier can be learned jointly to mini-

mize a shape classification loss. 

Given a training set { v s , y s } N s =1 
consisting of N shapes from L

classes, where v s is the shape representation of the s th shape,

y s ∈ { 1 , 2 , . . . , L } is the class label of the s th shape. Then we train a

multi-class linear SVM classifier as follows: 

L = min 

z 1 , ... , z L 

L ∑ 

l=1 

‖ z l ‖ 

2 + β
N ∑ 

s =1 

max (0 , 1 + z T l s v s − z T y s v s ) , (8)

where L is the loss function of the multi-class SVM classifier, l s =
arg max l ∈{ 1 , 2 , ... ,L } ,l � = y s z T l v s , z l is the l th dimension parameter of SVM

to be learned and β is a hyper parameter to control the relative

weight between the regulation term (the left part) and the multi-

class hinge-loss term (the right part). 

Stochastic gradient descent is used to minimize the loss L . We

can compute the gradient with respect to w j by: 

∂L 

∂w 

T 
j 

= 

∂L 

∂v T s 

∂v s 

∂w 

T 
j 

, (9)

where 

∂L 

∂v T s 
= 

{
0 1 + z T 

l s 
v s − z T y s v s ≤ 0 

z T 
l s 

− z T y s 1 + z T 
l s 

v s − z T y s v s > 0 , 
(10)

and 

∂v s 

∂w 

T 
j 

= σ (w 

T 
j h j )(1 − σ (w 

T 
j h j )) ·

( f max ({ c i j } N s i =1 
) − f avg ({ c i j } N s i =1 

)) diag ( h j ) , (11)

where diag ( h j ) is a diagonal matrix whose diagonal entries are

the elements in h j . For a testing shape, its shape representation
btained by our pooling function is v t , then its label can be pre-

icted by: ˆ y = arg max 
l∈{ 1 , 2 , ... ,L } z 

T 
l 

v t . 

. Experimental results 

In this section, we evaluate the proposed learned pooling func-

ion in Bag of Shape Features frameworks on several shape bench-

arks in comparison to the state-of-the-arts. We name our meth-

ds as BoCF-LP and BoSCP-LP, which refer to BoCF and BoSCP with

 learned pooling function, respectively. We also investigate the ef-

ects of important parameters introduced in our method on classi-

cation accuracy. 

.1. Experimental setup 

In order to forming shape feature descriptor vector, we concate-

ate the descriptors which is computed on 5 reference points. For

ach reference point, the bins for computing the features includes

 Euclidean distance bins, 12 orientation bins and 5 object thick-

ess difference bins, totally 300 bins. As a consequence, the dimen-

ion of a descriptor vector for each shape is 1500. When learning

he codebook, the number of cluster centers (codebook size) is set

o 2500 by default. To encode a shape part, we adopt LLC with

 nearest neighbors. When using Spatial Pyramid Matching(SPM)

ooling, a shape is divided into 1 !‘Á 1, 2 !‘Á 2 and 4 !‘Á 4, in to-

al 21 regions. The weight between the regularization term and the

ulti-class hinge-loss term in the multi-class linear SVM formula-

ion is set to 10. The number of quantization bins is 10 ( M = 10 ).

or BoSCP, the number of object thickness different bins for com-

uting SSC is 5 ( N td = 5 ). Also, we will discuss the reason of choos-

ng these parameters. 

All the experiments were carried out on a workstation (3.1 GHz

2-core CPU, 128G RAM and Ubuntu14.04 64-bit OS). It takes about

5 ms to compute the descriptor for one shape part, and about

s to encode the feature vector for one shape. The process of fea-

ure computation and codebook learning takes nearly 8 hours. The

earned pooling function and shape classification are trained end-

o-end which costs 80 min. The testing process for one shape takes

5 ms. 

We evaluate our method on several shape classification bench-

ark datasets, including the Animal dataset [6] and the MPEG-7

ataset [17] . To avoid the biases caused by randomness, the pro-

ess of training and testing is repeated for 10 times. Average clas-

ification accuracy is reported to evaluate the performance of dif-

erent shape classification methods. In each round, we randomly

elect half of shapes in each class to train and use the rest shapes

o evaluate for every dataset. 

.2. Animal dataset 

We first test our method on the Animal dataset which is in-

roduced in [6] . This dataset contains 20 0 0 shapes consisting of

0 kinds of animals. It is the most challenging shape dataset due

o the large intra-class variations caused by view point change and

arious gestures of animals (as shown in Fig. 4 ). Following the pre-

ious methods [36] , we randomly choose 50 shapes per class for

raining and leave the rest 50 shapes for testing. The comparison

etween our methods and other competitors is demonstrated in

able 1 . 

As shown in Table 1 , our methods BoCF-LP and BoSCP-LP which

se learned pooling function achieves outperforms results com-

ared to the origin BoCF and BoSCP, which proves that the learned

ooling function is more effective. 
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Fig. 4. Shapes of two classes from Animal dataset [6] . The first row belongs to label 

cat while the second one belongs to leopards. Some of these shapes have similar 

gestures which makes the shape recognition more difficult. 

Table 1 

Classification accuracy comparison on Animal dataset [6] . 

Algorithm Classification accuracy % 

Skeleton Paths [6] 67.90 

Contour Segments [6] 71.70 

IDSC [20] 73.60 

ICS [6] 78.40 

BoCF [36] 83.40 ± 1.30 

Bioinformatic [9] 83.70 

Shape Vocabulary [7] 84.30 ± 1.01 

BoCF + BoSP [30] 85.50 ± 0.88 

Contextual BOW model [24] 86.00 

BoCF-LP (ours) 86.30 ± 0.20 

BoSCP [29] 89.04 ± 0.95 

BoSCP-LP (ours) 89.77 ± 0.65 

Fig. 5. Typical shapes of some classes from MPEG-7 dataset [17] . 
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Table 2 

Classification accuracy comparison on MPEG-7 dataset [17] . 

Algorithm Classification accuracy% 

Skeleton Paths [6] 86.70 

Contour Segments [6] 90.90 

Bioinformatic [9] 96.10 

ICS [6] 96.60 

BoCF [36] 97.16 ± 0.79 

BoCF + BoSP [30] 98.35 ± 0.63 

BoCF-LP (Ours) 98.22 ± 0.20 

BoSCP [29] 98.41 ± 0.63 

BoSCP-LP (Ours) 98.72 ± 0.42 
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.3. MPEG-7 dataset 

Then we evaluate our method on the MPEG-7 dataset [17] ,

hich is the most well-known dataset for shape analysis in the

eld of computer vision. 1400 images of the dataset are divided

nto 70 classes with high shape variability, where there are 20 dif-

erent shapes in each class. We show some shapes in Fig. 5 . Aver-
Fig. 6. Classification accuracies on Animal dataset [6] by varying the number of quan
ge classification accuracy and standard derivation of classification

ccuracies are reported in Table 2 . 

As shown in Table 2 , our method BoCF-LP achieves 98.22%

ompared to BoCF by over 1.1% on the MPEG-7 dataset. However,

ompared to BoSCP, BoSCP-LP achieves few improvements, which

roves that the SSC feature descriptor is very good for shape clas-

ification. Also, the improvement on this dataset is not as signifi-

ant as the one on the Animal dataset, the reason is the accuracies

f the state-of-the-arts on this dataset have already approached to

00. 

.4. Parameter discussion 

In this section, we discuss the effects of four parameters on

hape classification accuracy. 

.4.1. The number of quantization bins 

We first discuss when the number of the bins ( M ) used for

uantization changes, how the classification accuracy is influenced

n the Animal dataset [6] . As shown in Fig. 6 , the shape classifi-

ation accuracy changes slightly when the number of quantization

ins varies. This experiment shows that the classification accuracy

s not sensitive to the number of quantization bins. As a result, the

umber of quantization bins is 10. 

.4.2. The number of object thickness different bins for computing 

SC 

In the BoSCP framework, when forming the SSC descriptors, the

umber of object thickness different bins is a key component to

ffect the performance. As shown in Fig. 7 , our method achieves
tization bins. (a) shows the result of BoCF-LP. (b) shows the result of BoSCP-LP. 



38 W. Shen et al. / Pattern Recognition Letters 106 (2018) 33–40 

Fig. 7. Classification accuracies of BoSCP-LP on Animal dataset [6] by varying the 

number of object thickness different bins for computing SSC. 
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the best performance when N td is set to 5. SSC with small N td 

can only give a coarse representation of the thickness information,

while losing most of the information a skeleton provides. Although

N td = 7 leads to a result close to the best one, it will result in sig-

nificant increase in SSC descriptor computation, codebook learning

and feature encoding. As a result, we choose N td = 5 to be the best

trade-off between accuracy and efficiency. 

4.4.3. Codebook size 

In our experiment, we adopt codebook sizes, including 500,

10 0 0, 150 0, 20 0 0, 250 0 and 30 0 0, to classify shapes on the An-

imal dataset. As shown in Fig. 8 , as the codebook size increases,

shape classification accuracy improves generally. However, when

codebook size is too big, it will predict the shapes in the same cat-

egory to be different categories. As a consequence, the codebook

size in our experiment is 2500. 

4.4.4. The number of reference points 

We also show how performance changes by varying the number

of reference points when computing our shape feature descriptor

in Fig. 9 . With the increase of the number of reference points, the
Fig. 8. Classification accuracies on Animal dataset [6] by varying the codebook
lassification accuracy is improved. However, using more reference

oints leads to a significantly time consuming shape feature com-

utation process. To balance the performance and computational

ost, we choose 5 reference points. 

.5. Method design discussion 

In this section, we discuss some possible alternative designs for

he components in our framework. 

.5.1. Feature division 

In our framework, we adopt SPM to divide the extracted lo-

al features. SPM can encode spatial information among the short-

ange contour fragments in a coarse-to-fine way. If we remove SPM

rom our framework, the classification accuracy drops to 87.87% on

he Animal dataset. 

One shortcoming of SPM is it is less effective against rotation

nd translation. Instead of SPM, we can use other feature division

pproaches, such as the one proposed in [7] which proposed to di-

ide the extracted local features according to other properties, in-

tead of the spatial locations of the features. We test this method

n the Animal dataset, which achieves a classification accuracy of

8.73%. This result shows that with a more variation robust fea-

ure division approach, our framework can achieves a better per-

ormance. 

.5.2. The joint learning strategy 

As mentioned in Section 3.3 , we learn the pooling function and

he classifier jointly. Alternatively, we can learn them in a stepwise

anner: We have tried to first learn the pooling function with the

oftmax loss, and then used the learned features to train a SVM

lassifier. But, this stepwise learning strategy results in a classifi-

ation accuracy of 86.79% (BoSCP) on the Animal dataset, which is

orse than our joint learning strategy. 

.5.3. Input-dependent pooling function 

Since we formulate our pooling function as a weighted

um of max and average pooling functions, where the weights

re expressed by an activation function of the input shape

eatures, our pooling function is input-dependent. To verify

he effectiveness of the input-dependent pooling function, we

ompare it with an input-independent pooling function: We
 size. (a) shows the result of BoCF-LP. (b) shows the result of BoSCP-LP. 
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Fig. 9. Classification accuracies on Animal dataset [6] by varying the reference points. (a) shows the result of BoCF-LP. (b) shows the result of BoSCP-LP. 
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et v j = σ (w j ) f max ({ c i j } N s i =1 
) + [1 − σ (w j )] f avg ({ c i j } N s i =1 

) . This input-

ndependent pooling function leads to a classification accuracy of

7.25% (BoSCP) on the Animal dataset, which is worse than our

nput-dependent learning pooling function. 

. Conclusion 

In this paper, we propose a learnable pooling function which is

daptive to the input shape features. Bag of Shape Features (BoSF),

uch as Bag of Contour Fragments (BoCF) and Bag of Skeleton-

ssociated Contour Parts (BoSCP), derived from the well-known

ag of Features (BoF), is an effective framework for shape rep-

esentation. The proposed pooling function is a weighted sum of

ax pooling and average pooling, and the weights can be jointly

earned with a shape classifier by gradient descent. The experi-

ental results on two standard shape datasets demonstrate the ef-

ectiveness of the proposed learned pooling function. 
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