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a b s t r a c t 

Contour and skeleton are two complementary representations for shape recognition. However combin- 

ing them in a principal way is nontrivial, as they are generally abstracted by different structures (closed 

string vs graph), respectively. This paper aims at addressing the shape recognition problem by combin- 

ing contour and skeleton according to the correspondence between them. The correspondence provides a 

straightforward way to associate skeletal information with a shape contour. More specifically, we propose 

a new shape descriptor, named S keleton-associated S hape C ontext (SSC), which captures the features of 

a contour fragment associated with skeletal information. Benefited from the association, the proposed 

shape descriptor provides the complementary geometric information from both contour and skeleton 

parts, including the spatial distribution and the thickness change along the shape part. To form a mean- 

ingful shape feature vector for an overall shape, the Bag of Features framework is applied to the SSC 

descriptors extracted from it. Finally, the shape feature vector is fed into a linear SVM classifier to rec- 

ognize the shape. The encouraging experimental results demonstrate that the proposed way to combine 

contour and skeleton is effective for shape recognition, which achieves the state-of-the-art performances 

on several standard shape benchmarks. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Shape is a significant cue in human perception for object recog-

ition. The objects shown in Fig. 1 have lost their brightness, color

nd texture information and are only represented by their silhou-

ttes, however it’s not intractable for human to recognize their

ategories. This simple demonstration indicates that shape is sta-

le to the variations in object color and texture and light condi-

ions. Due to such advantages, recognizing objects by their shapes

as been a long standing problem in the literature. Shape recogni-

ion is usually considered as a classification problem that is given

 testing shape, to determine its category label based on a set of

raining shapes as well as their category label. The main challenges

n shape recognition are the large intra-class variations induced

y deformation, articulation and occlusion. Therefore, the main fo-

us of the research efforts have been made in the last decade

5,6,8,27,42,43] is how to form an informative and discriminative

hape representation. 

Generally, the existing main stream shape representations

an be classified into two classes: contour based [8,21,27] and
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keleton based [1,3,34,40,41,46] . The former one delivers the infor-

ation that how the spatial distribution of the boundary points

aries along the object contour. Therefore, it captures more infor-

ative shape information and is stable to affine transformation.

owever, it is sensitive to non-ridge deformation and articulation;

n the contrary, the latter one provides the information that how

hickness of the object changes along the skeleton. Therefore, it

s invariant to non-ridge deformation and articulation, although it

nly carries more rough geometric features of the object. Conse-

uently, such two representations are complementary. Neverthe-

ess, very few works have tried to combine these two represen-

ations for shape recognition. The reason might be that combining

he data of different structures is not trivial, as the contour is al-

ays abstracted by a closed string while the skeleton is abstracted

ither by a graph or a tree. Consequently, the matching methods

13,17,19,28–31] for these two data abstraction are different. ICS [5]

s the first work to explicitly discuss how to combine contour and

keleton to improve the performance of shape recognition. How-

ver, the combination proposed in this work is just a weighted

um of the outputs of two generative models trained individually

n contour features and skeleton features respectively. Therefore,

ow to combine contour and skeleton into a shape representation

n a principled way is still an open problem. 

In this paper, our goal is to address the above combina-

ion issue to explore the complementarity between contour and
f skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 1. Human biological vision system is able to recognize these object without 

any appearance information (brightness, color and texture). 

Fig. 2. Some corresponding contour and skeleton parts, marked in green and red, 

respectively. The corresponding contour and skeleton points are linked by blue 

lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The Skeleton-associated Shape Context descriptor of a contour point in a 

contour fragment, which is a 3D tensor to describe the Euclidean distances, ori- 

entations and thickness differences between the contour point and others in the 

fragment. It equals to the concatenated shape context descriptors [8] computed on 

sub-parts (marked by different colors) separated according to the object thickness 

differences between the contour point and others in the fragment. 
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skeleton to improve the performance of shape recognition. The

main obstacle of the combination is the data structures of con-

tour and skeleton are different (closed string vs graph). A contour

is usually described by the features of its parts (contour fragments)

[21,42] . As the correspondence between contour points and skele-

ton points can be obtained easily, for each contour point, we can

associate the geometric information of its corresponding skeleton

point with it. In this way, we can record the change of the object

thickness, i.e., the skeleton radius, along each contour fragment.

Such association actually leads to the combination of contour and

skeleton on part level ( Fig. 2 shows some corresponding contour

and skeleton parts. Note that, a contour fragment may correspond

to more than one skeleton segments, such as the second example

in Fig. 2 ). Therefore, combing contour and skeleton on part level is

a feasible way. 

With the extra information provided by skeleton, inspired by

the well known descriptor S hape C ontext (SC) [8] , we propose to

encode the features of a contour point into a 3D tensor, in which

the three dimensions describe the Euclidean distances, orientations

and thickness differences between the contour points and others in

the fragment, respectively. Intuitively, the proposed new descrip-

tor extends SC by including the extra information, object thickness,

provided by skeleton. Therefore, it is more informative; Essentially,

this new descriptor is formed by concatenating the SC descrip-

tors of the sub-parts of the contour fragment separated according

to thickness information. Such sub-parts based representation cap-

ture fine level geometric information, so it is more discriminative.

Fig. 3 illustrates the new descriptor for a contour point in a con-

tour fragment, in which the sub-parts of the contour fragment are

marked by different colors and the sub-part and its SC descrip-

tor are marked by the same color. This new shape descriptor is

termed as S keleton-associated S hape C ontext (SSC), as it associates

the skeletal information with the contour descriptor. 

Following the framework of the recent work B ag of C ontour

F ragments (BCF) [45] , we can obtain a shape feature vector of an

overall shape by encoding and then pooling the SSC descriptors ex-

tracted from it. We term our method as B ag of S keleton-associated

C ontour P arts (BSCP), as it associates skeletal information with

contour fragments and encodes the shape features from shape part

level. Fig. 4 shows the pipeline of building a shape feature vector

by BSCP. Given a shape, firstly a normalization step is performed

to align the shape according to its major axis ( Fig. 4 (b)), as the

S patial P yramid M atching (SPM) [25] step ( Fig. 4 (g)) is not rotation

invariant. Then, the skeleton of the shape is extracted and the con-

tour of the shape is decomposed into contour fragments ( Fig. 4 (c)).

Each contour point is associated with an object thickness value,

i.e, the radius of its corresponding skeleton point. A shape part is

then described by the contour fragment associated with the ob-
Please cite this article as: W. Shen et al., Shape recognition by bag 
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ect thickness values provided by its corresponding skeleton seg-

ents ( Fig. 4 (d)). After that, each shape part is represented by

oncatenating the SSC descriptors extracted on its reference points

 Fig. 4 (e)), and then encoded into shape codes ( Fig. 4 (f)). To en-

ode shape parts, we adopt local-constrained linear coding (LLC)

44] scheme, as it has been proved to be efficient and effective

or image classification. Finally, the shape codes are pooled into

 compact shape feature vector by SPM ( Fig. 4 (h)). The obtained

hape feature vectors can be fed into any discriminative models,

uch as SVM and Random Forest, to perform shape classification.

sing such discriminative models for shape recognition is more ef-

cient than traditional shape classification methods, as the latter

equire time consuming matching and ranking steps. 

Our contributions can be summarized in three aspects. First,

e propose a natural way to associate a shape contour with

keletal information. Second, we propose a new shape descriptor

hich encodes the shape features from a contour fragment associ-

ted with skeletal information. Last, our method, Bag of Skeleton-

ssociated Contour Parts achieves the state-of-the-arts on several

hape benchmarks. 

The remainder of this paper is organized as follows. Section 2

eviews the works related to shape recognition. Section 3 intro-

uces the proposed shape descriptor as well as our framework

or shape recognition. Experimental results and analysis on several

hape benchmarks are shown in Section 4 . Finally, we draw the

onclusion in Section 5 . 

Our preliminary work [39] also combines contour and skeleton

or shape recognition, while the difference to this paper is obvious.

ather than simply concatenating the contour and skeleton fea-

ures on mid-level, this paper associates skeletal information with

 shape contour on low-level by making full use of the natural cor-

espondence between a contour and its skeleton. 

. Related work 

There have been a rich body of works concerning shape recog-

ition in recent years [7–10,16,20,22,27,42,43] . In the early age, the

xemplar-based strategy has been widely used, such as [8,27] . Gen-

rally, there are two key steps in this strategy. The first one is

xtracting informative and robust shape descriptors. For example,
of skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 4. The pipeline of building a shape feature vector by bag of skeleton-associated contour parts. 
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elongie et al. [8] introduce a shape descriptor named shape con-

ext (SC) which describes the relative spatial distribution (distance

nd orientation) of landmark points sampled on the object con-

our around feature points. Ling and Jacobs [27] use inner distance

o extend shape context to capture articulation. As for skeleton

ased shape descriptors, the reliability of them is ensured by ef-

ective skeletonization [12,33] or skeleton pruning [4,35] methods

o a large extent. Among them, the shock graph and its variants

32,34,41] are most popular, which are abstracted from skeletons

y designed shape grammar. The second one is finding the corre-

pondences between two sets of the shape descriptors by matching

lgorithms such as Hungarian, thin plate spline (TPS) and dynamic

rogramming (DP). A testing shape is classified into the class of

ts nearest neighbor ranked by the matching costs. The exemplar-

ased strategy requires a large number of training data to cap-

ure the large intra-class variances of shapes. However, when the

ize of training set become quite large, it’s intractable to search

he nearest neighbor due to the high time cost caused by pairwise

atching. 

Generative models are also used for shape recognition. Sun and

uper [42] propose a Bayesian model, which use the normalized

ontour fragments as the input features for shape classification.

ang et al. [43] model shapes of one class by a skeletal prototype

ree learned by skeleton graph matching. Then a Bayesian inference

s used to compute the similarity between a testing skeleton and

ach skeletal prototype tree. Bai et al. [5] propose to integrate con-

our and skeleton by a Gaussian mixture model, in which contour

ragments and skeleton paths are used as the input features. Unlike

heir method, ours encodes the contour and skeleton features into

ne shape descriptor according to the association between contour

nd skeleton. Therefore, we avoid the intractable step to finetune

he weight between contour and skeleton models. 

Recently, researchers begin to apply the powerful discrimina-

ive models to shape classification. Daliri and Torre [15,16] trans-

orm the contour into a string based representation according to

 certain order of the corresponding contour points found during

ontour matching. Then they apply SVM to the kernel space built

rom the pairwise distances between strings to obtain classifica-

ion results. Edem and Tari [20] transform a skeleton into a simi-

arity vector, in which each element is the similarity between the

keleton and a skeletal prototype of one shape category. Then they

pply linear SVM to the similarity vector to determine the category
 a

Please cite this article as: W. Shen et al., Shape recognition by bag o
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f the skeleton. Wang et al. [45] utilize LLC strategy to extract the

id-level representation BCF from contour fragments and they also

se linear SVM for classification. Such coding based methods are

sed for 2D and 3D shape retrieval [2,6] . Shen et al. [39] propose

 skeleton based mid-level representation named B ag of S keleton

 aths (BSP), and concatenate the BCF and BSP for shape recogni-

ion. The weights between BCF and BSP are automatically learned

y SVM. This method implicitly combines contour and skeleton ac-

ording to the weights learned by SVM, while this paper explicitly

ombines contour and skeleton by using the correspondence be-

ween them, which is a more natural combination way. 

. Methodology 

In this section, we will introduce our method for shape recog-

ition, including the steps of shape normalization, SSC descriptor

nd shape classification by BSCP. 

.1. Shape normalization 

As the SPM strategy assumes that the parts of shapes falling in

he same subregion are similar, it is not rotation invariant. To ap-

ly SPM to shape classification, a normalization step is required to

lign shapes roughly. One straightforward solution is to align each

hape with its major axis. Here, we use principal component anal-

sis (PCA) to compute the orientation of the major axis of each

hape. Formally, given a shape F ⊂ R 

2 , we apply PCA to the point

et { p i = (x i , y i ) | p i ∈ F } N 
i =1 

. First, the N × N covariance matrix � is

omputed by � = 

1 
N−1 

∑ N 
i =1 (x i − x i )(y i − y i ) , where x i = 

∑ N 
i =1 x i /N

nd y i = 

∑ N 
i =1 y i /N. Then, the two eigenvectors v 1 and v 2 of � form

he columns of the N × N matrix V , and the two eigenvalues of

are (λ1 , λ2 ) 
T = diag (V T �V ) . The orientation of the major axis

f the shape F is the orientation of the eigenvector whose cor-

esponding eigenvalue is bigger. All shapes are rotated to ensure

heir estimated major axes are aligned with the horizontal line,

uch as the example given in Fig. 4 (b). 

.2. Skeleton-associated shape context 

In this section, we show how to compute the SSC descriptor for

 given contour point step by step. 
f skeleton-associated contour parts, Pattern Recognition Letters 
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1 To ensure scale invariant, this value should be normalized by dividing by the 

mean value of the points on the contour part. 
3.2.1. Skeleton-associated contour 

For a given shape F , let C(F ) and S(F ) denote its contour and

skeleton, respectively. The skeleton S(F ) can be obtained by the

method introduced in [37] , which does not require parameter tun-

ing for skeleton computation. Our goal is to find the corresponding

skeleton point of each contour point and assign a object thickness

value to it. To describe our method clearly, here we first briefly re-

view some skeleton related definitions. According to the definition

of skeleton [11] , a skeleton is a set of the centers of the maximal

discs of a shape. A maximal disc has at least two points of tan-

gency on the contour, which are called G enerating P oints (GPs). 

Formally, for a skeleton point p(p ∈ S(F )) , let R(p) be the radius

of the maximal disc of the shape F centered at p and G(p) be the

set of GPs of p . On the discrete domain, R(p) can be approached

by the D istance T ransform (DT) value of p to the contour C(F ) : 

R(p) = min 

q ∈ C(F ) 
‖ p − q ‖ 2 , (1)

where ‖ · ‖ 2 is the � 2 -Norm. G(p) can be obtained approximatively

by 

G(p) = { q ∗|∃ p n ∈ N (p) , q ∗ = arg min 

q ∈ C(F ) 
‖ q − p n ‖ 2 } , (2)

where N (p) denotes the eight neighbors of p . Note that,

G(p) ⊂C(F ) . Now we have a one-to-many correspondence between

a skeleton point p and a set of contour point G(p) . For each con-

tour point q ∈ G(p) , we associate the object thickness value R(p)

with it, and use the notation C (·) to denote the correspond-

ing function mapping it to the skeleton point p , i.e., p = C (q ) , if

q ∈ G(p) . Now considering the overall shape, let G(S(F )) be the set

of all the GPs of S ( F ): 

G(S(F )) = 

⋃ 

p ∈ S(F ) 

G(p) . (3)

Note that G(S(F )) ⊆C(F ) , so the function C (·) can not be applied

to all the contour points. However, we can define a unified func-

tion R a (·) to compute the associated object thickness value for

each contour point q : 

R a (q ) = R(C (q a )) , (4)

where q a = arg min q g ∈ G(S(F ) l(q, q g ) and l ( ·, ·) is denoted by the

minimum contour curve length between two contour points. Eq. 4

means that for each contour point q , we search its closest contour

point q a ∈ G(S(F )) along the contour (if q ∈ G(S(F ) , then q a = q ), and

assign the associated object thickness value of q a to q . 

3.2.2. Shape descriptor computation 

Part-based methods [5,21,42,45] have been widely used for

shape recognition, as shape parts are the basic meaningful ele-

ments of a shape. We want to build a discriminative and informa-

tive shape representation based on shape parts. The shape parts

can be obtained by any contour decomposition methods, such like

D iscrete C ontour E volution (DCE) [23] . Given a shape contour C(F ) ,

we apply DCE to obtain its critical points { u i } T i =1 
, where T is the

number of the critical points. We build a shape part set P C(F ) ,

which consists of the contour fragments between any pairs of crit-

ical points u i , u j . Let c ij denote the contour fragment from u i to u j 
(anticlockwise direction), then we have 

P C(F ) = { c i j | i � = j, i, j ∈ { 1 , . . . , T }} . (5)

Note that we do not force u i and u j to be adjacent points in

the critical point set, and c ij and c ji are two different parts. Also

we have C(F ) = c i j 

⋃ 

c ji . Using the method described in the previ-

ous section, any contour part can be transformed into a skeleton-

associated contour part. In the reminder of this paper, unless oth-

erwise specified, we treat these two concepts equally. 
Please cite this article as: W. Shen et al., Shape recognition by bag 
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Now we propose how to compute the SSC descriptor at a ref-

rence contour point of a skeleton-associated contour part. Each

oint q on a skeleton-associated contour part can be represented

y a triplet (x, y, R a (q )) , where ( x , y ) is the relative coordinate and

 a (q ) is the associated object thickness value. 1 From this view, the

oint q actually lies in a 3D space. Given a contour part, we uni-

ormly sample n points on it, then for a given reference contour

oint r i , we describe its descriptor by the distribution of relative

ifferences to the n sampled points on Euclidean distance, orien-

ation and associated object thickness value. We compute a coarse

istogram h i for r i : 

 i ( j) = # { q � = r i : (q − r i ) ∈ bin ( j ) } , j ∈ { 1 , . . . , M} (6)

ere, (q − r i ) = (ρi , θi , log (R a (q )) − log (R a (r i ))) , where ρ i and θ i 

re the Euclidean distance between q and r i and the orientation

ngle of the ray from r i to q defined on log-polar space, respec-

ively. We use M bins that are uniform in such a 3D space, which

ollows the strategy used in SC [8] to make the descriptor more

ensitive to nearby sample points than those farther away. The his-

ogram h i is defined to be the SSC of r i . 

Finally, we concatenate the SSC descriptors of the reference

oints on a contour part c ij to form the descriptor vector f i j ∈ R 

D 

or c ij : f i j = (h i ; i = 1 , . . . , n ) T , where n is the number of the refer-

nce points and D = n ×M. 

.3. Bag of skeleton-associated contour parts 

In this section, we introduce how to perform shape classifica-

ion by BSCP. 

.3.1. Contour parts encoding 

Encoding a skeleton-associated contour part f ∈ R 

D is transform-

ng it into a new space B by a given codebook with K entries,

 = ( b 1 , b 2 , . . . , b K ) ∈ R 

D ×K . In the new space, the contour part f

s represented by a shape code c ∈ R 

K . 

Codebook construction is usually achieved by unsupervised

earning, such as k-means. Given a set of contour parts randomly

ampled from all the shapes in a dataset as well as their flipped

irrors, we apply k -means algorithm to cluster them into K clus-

ers and construct a codebook B = ( b 1 , b 2 , . . . , b K ) . Each cluster

enter forms an entry of the codebook b i . 

To encode a contour part f , we adopt LLC scheme [44] , as it

as been proved to be effective for image classification. Encoding is

sually achieved by minimizing the reconstruction error. LLC addi-

ionally incorporates locality constraint, which solves the following

onstrained least square fitting problem: 

in 

c πk 

‖ f − B πk 
c πk 

‖ , s.t. 1 

T c πk 
= 1 , (7)

here B πk 
is the local bases formed by the k nearest neighbors

f f and c πk 
∈ R 

k is the reconstruction coefficients. Such a locality

onstrain leads to several favorable properties such as local smooth

parsity and better reconstruction. The code of f encoded by the

odebook B , i.e. c ∈ R 

K , can be easily converted from c πk 
by setting

he corresponding entries of c are equal to c πk 
’s and others are

ero. 

Note that, the SSC descriptors of a contour part and its flipped

irror are different, as shown in Fig. 5 . To make our shape code

nvariant to the flip transformation, for a contour part, we propose

o add the shape code of its flipped mirror to its in an element-

ise manner (as shown in Fig. 5 ). In this way, the shape codes of

 contour part and its flipped mirror are the same. The available

ncoding of contour parts and their flipped mirrors are ensured
of skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 5. The shape codes of a contour part and its flipped mirror are added in an 

element-wise manner to form the final shape code for it, which is invariant to flip 

transformation. 
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ŷ

 

t  

T  

w  

i  

d

4

 

b  

t  

m  

d

4

 

c  

l  

S  

t  

t  

b  

u  

b  

i  

c  

t  

c  

e

2  

i  

l  

p

 

3  

2  

a  

w  

t  

t

 

m  

d  

c  

e  

t  

o  

t  

c  

v  

r  

o  

i

4

 

t  
y the sufficient samples used for codebook building (recall that

ur codebook is generated by clustering a set of contour parts ran-

omly sampled from all the shapes in a dataset as well as their

ipped mirrors). 

.3.2. Shape code pooling 

Given a shape F , its skeleton-associated contour parts are en-

oded into shape codes { c i } n i =1 
, where n is the number of the con-

our parts in F . Now we describe how to obtain a compact shape

eature vector by pooling the shape codes. SPM is usually used

o incorporate spatial layout information when pooling the image

odes. It usually divides an image into 2 l ×2 l (l = 0 , 1 , 2) subregions

nd then the features in each subregion are pooled respectively.

or the aligned shapes belong to one category, the contour parts

alls in the same subregions should be similar. Here, the position

f a contour part is defined as its median point. More specifically,

e divide a shape F into 2 l ×2 l (l = 0 , 1 , 2) subregions, i.e. 21 sub-

egions totally. Let c z ∈ R 

K denote the shape code of a contour part

t position z , to obtain a shape feature vector g ( F ), for each subre-

ion SR i , i ∈ (1 , 2 , . . . , 21) , we perform max pooling on it as follow:

 i (F ) = max (c z | z ∈ SR i ) , (8)

here the “max” function is performed in an element-wise man-

er, i.e. for each codeword, we take the max value of all shape

odes in a subregion. Max pooling is robust to noise and has been

uccessfully applied to image classification. g i ( F ) is a K dimensional

eature vector of the subregion SR i . The BSCP vector g ( F ) is a con-

atenation of the feature vectors of all subregions: 

 (F ) = (g 

T 
1 (F ) , g 

T 
2 (F ) , . . . , g 

T 
21 (F )) T . (9)

inally, g ( F ) is normalized by its � 2 -norm: g (F ) = g (F ) / ‖ g (F ) ‖ 2 . 

.4. Shape classification by BSCP 

Given a training set { (g i , y i ) } M 

i =1 
consisting of M shapes from L

lasses, where g i and y i ∈ { 1 , 2 , . . . , L } are the BSCP vector and the

lass label of i th shapes respectively, we train a multi-class linear

VM [14] as the classifier: 

min 

 1 , ... , w L 

M ∑ 

j=1 

‖ w j ‖ 

2 + α
∑ 

i 

max (0 , 1 + w 

T 
l i 
g i − w 

T 
y i 

g i ) , (10)
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here l i = arg max l ∈ { 1 , 2 , ... ,L } ,l � = y i w 

T 
l 
g i and α is a parameter to bal-

nce the weight between the regularization term (left part) and

he multi-class hinge-loss term (right part). For a testing shape

ector g , its class label is given by 

 

 = arg max 
l ∈ { 1 , 2 , ... ,L } 

w 

T 
l g . (11) 

Here we adopt linear SVM, as the proposed BSCP feature vec-

or is a high dimensional sparse vector, computed by LLC coding.

he � 2 normalization in LLC makes the inner product of any vector

ith itself to be one, which is desirable for linear kernels [44] . Us-

ng classifiers with nonlinear kernel, such as kernel SVM and ran-

om forest, instead leads to performance decrease. 

. Experimental results 

In this section, we evaluate our method on several shape

enchmarks in comparison to the state-of-the-arts. We also inves-

igate the effects of two important parameters introduced in our

ethod on classification accuracy: the number of object thickness

ifference bins for computing SSC N td and codebook size K . 

.1. Experimental setup 

For each contour part, we form a descriptor vector for it by con-

atenating the SSC descriptors computed on 5 reference points. Un-

ess otherwise specified, we set the number of bins for computing

SC to 300 (5 Euclidean distance bins, 12 orientation bins, 5 object

hickness difference bins). Thus the dimension of a descriptor vec-

or for a contour part is 1500. The number of Euclidean distance

ins and the number of orientation bins are set to the default val-

es used in SC [8] . Hence, we will discuss the effects of the num-

er of object thickness difference bins on classification accuracy

ndividually. When learning the codebook, the number of cluster

enters (codebook size) is set to 2500 by default. We also study

he performances of BSCP by varying the codebook size. To en-

ode a contour part, we adopt the approximated LLC with 5 near-

st neighbors. When pooling, a shape is divided into 1 × 1, 2 ×
 and 4 × 4, in total 21 regions. The weight between the regular-

zation term and the multi-class hinge-loss term in the multi-class

inear SVM formulation is set to 10. Default parameter settings re-

orted in [37] are adopted to extract skeletons. 

All the experiments were carried out on a workstation (3.1 GHz

2-core CPU, 128G RAM and Ubuntu14.04 64-bit OS). It takes about

5 ms to compute our SSC descriptor for one contour fragment,

nd 1.1 s to encode the BSCP feature vector for one shape. The

hole training process takes about 8 h (including feature compu-

ation and codebook learning), the testing process for one shape

akes 17.5 ms (excluding feature computation). 

We evaluate our method on several shape classification bench-

ark datasets, including the MPEG-7 dataset [24] , the Animal

ataset [5] , and the ETH-80 dataset [26] . To avoid the biases

aused by randomness, such a procedure is repeated 10 times. Av-

rage classification accuracy and standard derivation are reported

o evaluate the performance of different shape classification meth-

ds. In each round, we randomly select half of shapes in each class

o train and use the rest shapes to evaluate for every dataset ex-

ept the ETH-80 dataset. On the ETH-80 dataset, following the pre-

ious methods [15,16,26,27,45] , we use all shapes except the cur-

ent one for training and use the current one for testing (Leave-

ne-out setting [18] ). Experimental results and analysis are given

n the rest of this section. 

.2. Animal dataset 

We firstly test our method on the Animal dataset which is in-

roduced in [5] . This dataset contains 20 0 0 shapes divided into
f skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 6. Shapes of two classes from Animal dataset [5] . The first row shows 5 shapes 

of the Cat class, with large intra-class variations caused by view point change and 

various gestures of the cats. Moreover, leopards on the second row are similar to 

those cats on the first row, which makes recognition of these two kinds of shapes 

much more difficult. 

Table 1 

Classification accuracy comparison on Animal dataset [5] . 

Algorithm Classification accuracy (%) 

Skeleton paths [5] 67.90 

Contour segments [5] 71.70 

IDSC [27] 73.60 

ICS [5] 78.40 

BCF [45] 83.40 ± 1.30 

Bioinformatic [10] 83.70 

ShapeVocabulary [6] 84.30 ± 1.01 

BCF + BSP [39] 85.50 ± 0.88 

Contextual BOW [9] 86.00 

BSCP 89.04 ± 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Classification accuracy comparison on MPEG-7 dataset [24] . 

Algorithm Classification accuracy (%) 

Skeleton Paths [5] 86.70 

Contour Segments [5] 90.90 

Bioinformatic [10] 96.10 

ICS [5] 96.60 

BCF [45] 97.16 ± 0.79 

BCF + BSP [39] 98.35 ± 0.63 

BSCP 98.41 ± 0.44 
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Table 3 

Classification accuracy comparison on ETH-80 

dataset [26] . 

Algorithm Classification accuracy 
20 kinds of animals, including cat, spider, leopard, etc. It is the

most challenging shape dataset due to the large intra-class varia-

tions caused by view point change and various gestures of animals

(as shown in Fig. 6 ). We randomly choose 50 shapes per class for

training and leave the rest 50 shapes for testing. The comparison

between BSCP and other shape classification methods is demon-

strated in Table 1 . 

As shown in Table 1 , the proposed method achieves a classifi-

cation accuracy at 89.04% which significantly outperforms the pre-

vious state-of-the-art method, Contextual BOW [9] , by over 3.0%.

This result proves that the introduction of the object thickness in-

formation extracted from skeletons indeed help shape recognition.

Our method also performs much better than BCF + BSP [39] , evi-

dencing that our method which associates a shape contour with

skeletal information in such a principal way is more effective than

the previous method, which combines contour and skeleton im-

plicitly according to the weights learned by SVM. The comparison

between our method and BCF [45] , directly shows that SSC de-

scriptor can capture not only the geometric information of the ob-

ject contour but also the object thickness information for a shape.

The combination of such two kinds of complementary information

leads to an improvement on resisting interference caused by intra-

class variations. 

4.3. MPEG-7 dataset 

Then we evaluate our method on the MPEG-7 dataset [24] ,

which is the most well-known dataset for shape analysis in the

field of computer vision (see Fig. 7 ). 1400 images of the dataset
Fig. 7. Typical shapes of some classes from MPEG-7 dataset [24] . 

Please cite this article as: W. Shen et al., Shape recognition by bag 

(2016), http://dx.doi.org/10.1016/j.patrec.2016.02.002 
re divided into 70 classes with high shape variability, in each of

hich there are 20 different shapes. Average classification accuracy

nd standard derivation of classification accuracies are reported in

able 2 . 

As shown in Table 2 , our method achieves the best performance

n the MPEG-7 dataset. BCF [45] has already obtained good re-

ult, since it applies the Bag of Features framework to obtain the

id-level model of shape representation, which is more robust and

ccurate. BCF + BSP [39] combines skeleton and contour informa-

ion in a simple but effective way, and performs better than BCF,

hich proves that both skeleton and contour features are impor-

ant in shape classification. However, with adopting SSC descriptor

o combine contour and skeleton information, our method achieves

etter result than BCF + BSP on this dataset. The improvement on

his dataset is not so significant as the one on the Animal dataset,

he reason is the accuracies of the state-of-the-arts on this dataset

ave already approached to 100%. 

.4. ETH-80 dataset 

The ETH-80 dataset [26] contains 80 objects, which are di-

ided into 8 categories. There are 41 3D color photographs token

rom different viewpoints for each object. We use the segmenta-

ion masks provided by the dataset to evaluate our method. The

esult is shown in Table 3 . 

Compared with other methods, ours achieves the classification

ccuracy of 93.05%, outperforming the previous state-of-the-art ap-

roach in [45] by over 1.5%. 

.5. Parameter discussion 

In this section, we investigate the effects of three important pa-

ameters on shape classification accuracy. 

The number of object thickness difference bins for comput-

ng SSC. Since the proposal of the shape descriptor SSC is an im-

ortant contribution, it is necessary to study how different settings

f the descriptor effect the performance on shape classification. 

As an extension of the Shape Context, SSC has one more di-

ension to describe the thickness differences, the number of
Color histogram [26] 64.86 

PCA gray [26] 82.99 

PCA masks [26] 83.41 

SC + DP [26] 86.40 

IDSC + DP [27] 88.11 

Robust symbolic [15] 90.28 

Kernel-edit [16] 91.33 

BCF [45] 91.49 

Bioinformatic [10] 91.50 

BSCP 93.05 

of skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 8. Classification accuracies on Animal dataset [5] by varying the number of object thickness difference bins for computing SSC N td . 

Fig. 9. Classification accuracies on Animal dataset [5] by varying the number of reference points for computing SSC. 
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bject thickness difference bins N td . To investigate the influence

f this parameter, we set N td to different values to observe the

erformance change on the Animal dataset, while other param-

ters are set to the default values. The result is reported in

ig. 8 . 

Observed that our method achieves the best performance when

 td is set to 5. N td = 3 (or N td = 1 ) leads to performance decrease.

he reason may be that SSC with small N td can only give a coarse

epresentation of the thickness information, while losing most of

he information a skeleton provides. Although N td = 7 leads to a

esult close to the best one, it will result in significant increase

n SSC descriptor computation, codebook learning and feature en-

oding. N td = 5 , which is selected by us, is thought to be the best

rade-off between accuracy and efficiency. We use it as the de-

ault value in our experiments, and gain the state-of-the-art per-

ormances on several datasets (see Tables 1 –3 ). 
Please cite this article as: W. Shen et al., Shape recognition by bag o
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The number of reference points for computing SSC. We also

how how performance changes by varying the number of refer-

nce points when computing our SSC descriptor in Fig. 9 . Unsur-

risingly, with the increase of the number of reference points, the

lassification accuracy is improved, as more shape details are con-

idered. However, using more reference points leads to a signifi-

antly time consuming shape feature computation process. To bal-

nce the performance and computational cost, we choose 5 refer-

nce points. 

Codebook size. In this experiment, we adopt codebooks with

ifferent sizes, including 50 0, 10 0 0, 150 0, 20 0 0, 250 0 and 30 0 0, to

lassify shapes on the Animal dataset. Other parameters are fixed

o their default values. The classification accuracies of BSCP by us-

ng different codebook sizes are shown in the Fig. 10 . As the code-

ook size increases, shape classification accuracy improves gener-

lly, which was also reported in [45] . 
f skeleton-associated contour parts, Pattern Recognition Letters 
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Fig. 10. Classification accuracies on Animal dataset [5] by varying codebook size K . 

Fig. 11. Each row represents four shape examples from one kind of “device” class 

in the MPEG-7 dataset. The skeleton of each shape is visualized by black curves. 

The envelope contour of the shapes in each row are similar, while their skeletons 

are totally different. 
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4.6. Limitation 

Our SSC descriptor relies on the quality of the extracted skele-

ton. It also requires that the object can be well represented by its

skeleton. Some objects in the MPEG-7 dataset, such as the “de-

vice” classes shown in Fig. 11 , are not suitable to be represented by

skeletons. In this case, our SSC descriptor does not perform well.

We have applied our SSC descriptor to the shape retrieval frame-

work of “Shape Vocabulary” [6] and test it on the MPEG-7 dataset.

Unfortunately, we do not see the performance increase. This may

be another reason why our method does not achieve an obvious

classification improvement on the MPEG-7 dataset, as shown in

Table 2 . 

5. Conclusion 

In this paper, we present a novel shape representation called

BSCP, which combines contour and skeleton in a principal way.

This is achieved through the adoption of a novel low-level shape

descriptor, the SSC, which is able to make full use of the natural

correspondence between a contour and its skeleton. Both the nor-

malization step and SPM are adopted to ensure that our method

is effective and accurate, without losing the invariance to rotation.
Please cite this article as: W. Shen et al., Shape recognition by bag 
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e have tested BSCP in many benchmarks, and the results lead

o a conclusion that our method has achieved the state-of-the-art

erformance. Parameter discussion is also done as a reference for

ther researchers. In the future, we will further study how to ap-

ly BSCP to recognize objects in natural images, which requires re-

iable object contour detection [38] and symmetry detection [36] . 
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