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ABSTRACT

Bag of Contour Fragments (BoCF), derived from the well-
known Bag-of-Features (BoF), is an effective framework for
shape representation. The feature pooling in this framework
is a critical step, while either max pooling or average pooling
is not a learnable process. In this paper, we aim at learning a
pooling function which is adaptive to the input contour frag-
ment features instead. Towards this end, we formulate our
pooling function as a weighted sum of max pooling and av-
erage pooling, where the weight is expressed by an activation
function of the input contour fragment features. To automat-
ically learn this weight, the output of the pooling function
is fed into a SVM classifier and they are trained jointly to
minimize a shape classification loss. Experimental results on
several standard shape datasets demonstrate the effectiveness
of the proposed learned pooling function, which can achieve
considerable improvements compared with BoCF.

Index Terms— Shape classification, Bag of Contour
Fragments, max pooling, average pooling, learned pooling
function

1. INTRODUCTION

Shape plays an important role in object recognition, especial-
ly when the object in an image lost its brightness, color and
texture information. Shape recognition is the task that aims at
predicting which object category an input shape belongs to.

A shape generally can be represented by its contour, a
closed curve. The main obstacle in shape recognition is how
to form a reliable shape representation which is invariant
to local shape deformation while discriminative to differ-
ent shape classes. Bag of Contour Fragments (BoCF) [1],
derived from the well-known Bag-of-Features (BoF) [2, 3],
converts a shape contour into an informative feature vector,
avoiding the contour point matching process in traditional
shape recognition methods [4, 5]. The BoCF feature vector is
formed by encoding and pooling the local contour fragment
features. The pooling function used in BoCF is a fixed max
pooling function, but as investigated in [6], learning a pooling
function adaptive to input data can benefits performance.

In this paper, we propose to learn a pooling function
which is adaptive to the input contour fragment features in

the BoCF framework. More specifically, we formulate our
pooling function as a weighted sum of max-pooling and
average-pooling, where the weight is expressed by an acti-
vation function of the input contour fragment features. The
output of the pooling function is fed into a SVM classifier and
the pooling function and the classifier can be trained jointly
to minimize a shape classification loss.

Our method is inspired by [6], which learns pooling func-
tion in a deep convolutional neural network. The input data
of the pooling function are ordered and have a fixed length.
While in our problem, the input data of the pooling function
are responses on a visual word of a set of contour fragment
features, which are unordered and have unfixed lengths. To
address this issue, we quantize the responses on each visual
word into a fixed number of bins. Then the weight is learned
based on the quantization histograms.

The core contribution of the paper is the proposal of the
learnable pooling function in the BoCF framework, where we
not only provide an effective way to convert the contour frag-
ment features into a proper input format for the pooling func-
tion, but also describe how to learn the pooling function joint-
ly with a shape classifier.

2. RELATED WORK

Shape recognition has been widely studied in the past decade.
Traditional methods often extract local deformation invariant
features, like shape context (SC) [4] and the inner distance
shape context (IDSC) [5], at each point on each shape con-
tour, and then match them by using sequence matching, such
as Dynamic Time Warping (DTW) [7] and Optimal Subse-
quence Bijection (OSB) [8]. In order to accommodate more
degrees of freedoms of transformations, [9, 10] used partially
elliptical features. While to convert a closed curve to a se-
quence is a non-trivial problem. Normally, sequence match-
ing has to be performed multiple times to obtain an optimal
correspondence, which is time consuming.

The Bag of Contour Fragments, proposed by Wang et
al. [1], which had proven its effectiveness in shape classifi-
cation and shape retrieval [11], is an unconventional shape
recognition framework. It used Local-constraint linear cod-
ing (LLC [12]) to encode local contour fragment features and
used max pooling to generate a compact feature vector, which



would be then fed into a SVM classifier for shape classifica-
tion. Shen et al. [13, 14] used this framework to efficiently
combine contour and skeleton features for shape recognition.
We also use this framework in our method, but the pooling
function is learnable and jointly learned with the SVM classi-
fier in our method.

Lee et al. [6] proposed to generalize the pooling function
in a Convolutional Neural Network (CNN). They investigated
how to combine average pooling and max pooling by a weight
learned from the input data of a pooling layer. Our method is
inspired from [6], but differs in frameworks (BoF vs CNN)
and input data structures (responses of unfixed lengths and
orders vs responses of the fixed length and order).

3. METHODOLOGY

In this section, we detail the proposed method for shape
recognition. First, we briefly review the Bag of Contour
Fragments framework. Then, we introduce the proposed
learnable pooling function. Finally, we discuss how to jointly
learn a pooling function and a shape classifier.

3.1. Bag of Contour Fragments

In the framework of Bag of Contour Fragments (BoCF) [1],
a shape S is represented by a set of meaningful contour frag-
ments G(S) = {gpq, p ̸= q, p, q ∈ C(S)}, where p, q are two
critical points [15] on the contour C(S). For each contour
fragment gpq , the shape context (SC) [4] descriptor is used to
represent it, which results in a d-dimensional feature vector
xpq ∈ Rd×1.

To obtain the BoCF representation for a shape, the set
of contour fragment features is encoded by a learned code-
book, followed by being passed to a pooling function. The
codebook is constructed by clustering the contour fragmen-
t features extracted from a training shape set, and Locality-
constrained Linear Coding (LLC) [12] is used to encode the
contour fragment features into shape codes. After such an en-
coding process, each contour fragment feature xpq of shape S
is encoded into a shape code c = (cj ; j = 1, . . . ,K)T , where
K is the codebook size.

Assuming that there are Ns contour fragments extracted
from the shape S, after LLC encoding, a set of shape codes
{ci}Ns

i=1 is obtained, where ci is the shape code of the i-th
contour fragment in S. To form an informative and compact
representation v = (vj ; j = 1, . . . ,K)T for the shape S, a
pooling function is applied to {ci}Ns

i=1. Two pooling functions
are commonly used. One is max pooling:

vj = fmax({cij}Ns
i=1) = max

i∈{1,...,Ns}
cij , (1)

the other is average pooling:

vj = favg({cij}Ns
i=1) =

1

Ns

Ns∑
i

cij , (2)

3.2. Bag of Contour Fragments with A Learned Pooling
Function

Now we propose our method for shape recognition. We adopt
the Bag of Contour Fragments (BoCF) framework. The pool-
ing function used in BoCF is max pooling, but it is difficult to
draw a conclusion that max pooling dominates average pool-
ing. Here, instead of directly using max pooling or average
pooling to obtain the final shape representation, we propose
to learn a pooling function via combining max and average
pooling. We formulate our pooling function as a weighted
sum of max and average pooling, where the weight is ex-
pressed by an activation function of the input contour frag-
ment features. Thus, our pooling function is adaptive to the
input shape codes and can be jointly learned with a shape clas-
sifier.

The process of our learnable pooling function is shown as
in Fig.1(d). We will introduce the detail about our learnable
pooling function next.

A straightforward way to combine max and average pool-
ing is to sum their results by a weight:

vj = αjfmax({cij}Ns
i=1) + (1− αj)favg({cij}Ns

i=1), (3)

where αj is a weight factor. Rather than using a fixed αj , we
would like to learn a data-adaptive αj . In [6], such a weight
is expressed by a nonlinear transformation of the input data.
However, the input data should be ordered and have a fixed
length. Unfortunately, our input data is a set of shape codes,
which are unordered and may have different numbers from
one shape to another. To address this issue, we propose to
quantize the shape codes corresponding to each visual word
into a fixed number of bins. More specifically, given {cij}Ns

i=1,
which represents the shape codes corresponding to the j-th
visual word in the codebook, our goal is to quantize them into
M bins to form a M -dimensional histogram. As we know that
each cij satisfies that 0 ≤ cij ≤ 1, we divide the interval (0,
1] into M uniform bins, i.e., (0, 1/M ], (1/M, 2/M ], . . . , (1−
1/M, 1]. Then we count the number of nonzero values fall in
each bin correspond to the j-th visual word, which results
in a quantization histogram, denoted by hj = (hjm;m =
1, . . . ,M)T , where

hjm = #{cij ∈ bin(m)}, i ∈ {1, . . . , Ns}, (4)

and

bin(m) = (
1

M
(m− 1),

m

M
],m ∈ {1, . . . ,M}. (5)

By this way, we convert the unordered and unfixed-length
shape codes into ordered and fixed-length quantization his-
tograms. Fig. 2 shows an example to quantize two set of shape
codes computed from two different shapes. The numbers of
shape codes from these two sets are different (N1 and N2 re-
spectively), while the formed quantization histograms have
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Fig. 1. The pipeline of our method for shape recognition. (a) is an input shape. (b) are the contour fragments from the input
shape. (c) are the shape codes corresponding to the contour fragments in (c). In (d), the red histogram (top left), the blue
histogram (bottom left) and the mixed histogram (right) stand for the shape representation obtained by max pooling, average
pooling and our learnable pooling respectively. Our pooling function can be learned jointly with the classifier (See the red
feedback arrow).
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Fig. 2. Shape code quantization. (a) The shape codes com-
puted from two different shapes, whose numbers are N1 and
N2 respectively. (b) The quantization histograms of the shape
codes in (a). Each row shows the shape codes and their quan-
tization histograms corresponding to one visual word. The
shape codes are quantized into M = 5 bins uniformly in the
interval (0, 1].

the same number of bins (M = 5). hj is another representa-
tion of shape codes {cij}, which reflects how strong the shape
codes response is on the j-th visual word. We can express the
αj in Eqn. 3 by αj = σ(wT

j hj) , where σ(·) is a sigmoid
activation function and wj = (wjm;m = 1, . . . ,M)T is a
transformation vector. Now we can rewrite Eqn. 3 by

vj = σ(wT
j hj)fmax({cij}Ns

i=1)+[1−σ(wT
j hj)]favg({cij}Ns

i=1).
(6)

Finally, the shape representation of shape S obtained by
our learnable pooling function is: v(S) = (v1, v2, . . . , vK)T .

3.3. Joint Learning of A Pooling Function and A Classifi-
er

Since hj is directly computed from the input of our pooling
function, i.e., {cij}Ns

i=1, αj is adaptive to input data . So the
transformation vector wj can be learned from the data. Feed-
ing the output of our pooling function into a classifier, e.g.,
SVM [16], the transformation vector wj and the classifier can
be learned jointly to minimize a shape classification loss.

Given a training set {vs, ys}Ns=1 consisting of N shapes
from L classes, where vs is the shape representation of the
s-th shape, ys ∈ {1, 2, . . . , L} is the class label of the s-th
shape. Then we train a multi-class linear SVM classifier as
follows:

L = min
z1,...,zL

L∑
l=1

∥zl∥2 + β
N∑
s=1

max(0, 1 + zTlsvs − zTys
vs),

(7)
whereL is the loss function of the multi-class SVM classifier,
ls = argmaxl∈{1,2,...,L},l ̸=ys

zTl vs, zl is the l-th dimension
parameter of SVM to be learned and β is a hyper parameter
to control the relative weight between the regulation term (the
left part) and the multi-class hinge-loss term (the right part).

Stochastic gradient descent is used to minimize the loss
L. We can compute the gradient with respect to wj by:

∂L
∂wT

j

=
∂L
∂vT

s

∂vs

∂wT
j

, (8)

where

∂L
∂vT

s

=

{
0 1 + zTlsvs − zTys

vs ≤ 0

zTls − zTys
1 + zTlsvs − zTys

vs > 0,
(9)



Algorithm Classification accuracy
Skeleton Paths [17] 67.90%

Contour Segments [17] 71.70%
ICS [17] 78.40%

Bioinformatic [19] 83.7%
BoCF [1] 83.40 ± 1.3%

Ours 86.3 ± 0.2%

Table 1. Classification accuracy comparison on Animal
dataset [17]

and

∂vs

∂wT
j

= σ(wT
j hj)(1− σ(wT

j hj))·

(fmax({cij}Ns
i=1)− favg({cij}Ns

i=1))diag(hj), (10)

where diag(hj) is a diagonal matrix whose diagonal entries
are the elements in hj . For a testing shape, its shape repre-
sentation obtained by our pooling function is vt, then its label
can be predicted by: ŷ = arg max

l∈{1,2,...,L}
zTl vt.

4. RESULTS AND DISCUSSIONS

We evaluate our method on several shape classification bench-
mark datasets, including the Animal dataset [17] and the
MPEG-7 dataset [18]. To avoid the biases caused by random-
ness, the process of training and testing is repeated for 10
times. Average classification accuracy is reported to evaluate
the performance of different shape classification methods. In
each round, we randomly select half of shapes in each class
to train and use the rest shapes to evaluate for every dataset.

4.1. Animal Dataset

We first test our method on the Animal dataset which is intro-
duced in [17]. This dataset contains 2000 shapes consisting of
20 kinds of animals. Following the previous methods [1], we
randomly choose 50 shapes per class for training and leave
the rest 50 shapes for testing. The comparison between our
method and other competitors is demonstrated in Table 1.

As shown in Table 1, the proposed method significantly
outperforms the state-of-the-art method, which proves that the
learned pooling function is more effective.

4.2. MPEG-7 Dataset

Then we evaluate our method on the MPEG-7 dataset [18],
which is the most well-known dataset for shape analysis in the
field of computer vision. 1400 images of the dataset are di-
vided into 70 classes with high shape variability, where there
are 20 different shapes in each class. Average classification
accuracy and standard derivation of classification accuracies
are reported in Table 2.

Algorithm Classification accuracy
Skeleton Paths [17] 86.70%

Contour Segments [17] 90.90%
Bioinformatic [19] 96.10%

ICS [17] 96.60%
BoCF [1] 97.16 ± 0.79 %

Ours 98.22 ± 0.2 %

Table 2. Classification accuracy comparison on MPEG-7
dataset [18]

Fig. 3. Classification accuracies on Animal dataset [17] by
varying the number of quantization bins.

As shown in Table 2, our method achieves the best per-
formance on the MPEG-7 dataset. BoCF [1] has already ob-
tained a good result, while our learned pooling function still
leads an improvement.

4.3. The numbers of quantization bins

Then we will discuss when the the number of the bins (M )
used for quantization changes, how the classification accuracy
is influenced on the Animal dataset [17]. As shown in Fig. 3,
the shape classification accuracy changes slightly when the
number of quantization bins varies. This experiment shows
that the classification accuracy is not sensitive to the number
of quantization bins.

5. CONCLUSION

In this paper, we proposed a learnable pooling function which
is adaptive to the input contour fragment features. The pro-
posed pooling function is a weighted sum of max pooling and
average pooling, and the weights can be jointly learned with a
shape classifier by gradient descent. The experimental results
on two standard shape datasets demonstrate the effectiveness
of the proposed learned pooling function.
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