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a b s t r a c t 

Recent face detectors based on deep convolutional neural networks (DCNN) have substan- 

tially improved the detection performance in the wild. However, the detection speed is 

still the biggest bottleneck, which hinders the practical deployment of these face detectors 

on resource-limited platforms. To address this issue, the paper proposes a Proposal Pyra- 

mid Network (PPN) to generate face candidates extremely fast, which reduces the major 

computational complexity in cascaded DCNN face detectors. PPN is a lightweight fully con- 

volutional network with multiple branches, which takes a single image as input and gen- 

erates face proposals with different scales in terms of separate branches simultaneously. 

In this manner, it avoids the traditional image pyramid structure and thus achieves a very 

fast processing speed. To evaluate the effectiveness of our proposed method, a three-stage 

cascaded DCNN face detector is realized based on PPN. Extensive experimental results on 

several public benchmarks show that the proposed face detector achieves comparable ac- 

curacy to the-state-of-arts while the detection speed reaches 60 FPS with an i5 CPU, which 

significantly exceeds previous DCNN-based face detectors. (The source code is available at 

https://github.com/zhaofan0622/PPN ). 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Face detection aims to locate all faces in one image. It is a fundamental step in many face-related vision tasks, such

as face registration [24,45] , facial image enhancement [48] and face recognition. Since the groundbreaking work of Viola-

Jones face detector [36,37] , many researchers are dedicated to developing multi-view and variations-robust face detectors

by designing better features or classifiers. However, hand-crafted features are not always robust to extreme variations in

illumination, posture and occlusion, etc. 

In recent years, deep convolutional neural networks (DCNN) have been developed rapidly and brought tremendous

progress in many fields including image classification. Compared with hand-crafted features, DCNN generally take raw im-

ages as inputs and automatically learn more targeted representations for different tasks. As a result, face detectors based

on DCNN have potential to find faces under extreme conditions. Unfortunately, DCNN often contain a lot of parameters and

computations which slows down most of these detectors. 

To improve the speed of DCNN based face detectors, some methods [14,17,28,46] introduce the cascaded framework and

achieve nearly real-time speeds. The cascaded framework is fast and widely used in many commercial face detectors, since
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Fig. 1. The network structure of PPN . It takes a single image as input and generates multi-scale face proposals simultaneously via multiple branches in a 

pyramid manner. 

Fig. 2. The pipeline of our three-stage cascaded face detector. The first stage PPN generates multi-scale face proposals with a single input image. Then 

these candidate windows are refined with the second stage RNet-24 and the third stage RNet-48 successively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its proposal stage can filter out most background regions with a lightweight model. Meanwhile, an image pyramid is also

needed to generate face candidates at multiple scales, which cause that the proposal stage takes most of the detection time.

Besides, this proposal strategy has following two drawbacks: (1) Building an image pyramid needs to perform image scaling

multiple times, which is time consuming and degrades the image quality. (2) Detecting bigger faces needs to perform a

fixed-size detection template on a series of zoom-out images. So bigger faces can’t obtain higher recognition accuracies

than smaller faces, which goes against our common sense. 

To address these issues, this paper proposes a Proposal Pyramid Network (PPN) to fast generate high performance

face proposals. PPN is a fully convolutional network (FCN) with total 11 branches, where the odd branches handle de-

tection windows with size 8 × 2 (i −1) / 2 , i ∈ [1 , 3 , 5 , 7 , 9 , 11] , and the even branches handle detection windows with size

12 × 2 i/ 2 −1 , i ∈ [2 , 4 , 6 , 8 , 10] . Fig. 1 shows how PPN generates face proposals in different scales in terms of different branches

simultaneously. Taking a single image with arbitrary size as input, each branch will generate a probability map, in which

each element represents the probability that whether a specified size window on the input image contains a face. 

The advantages of our PPN are in three folds. First, this network can generate candidate faces at multiple scales with just

one input image and one network propagation. Building an image pyramid is no longer necessary. There are total 11 network

branches that correspond to 11 different scales. In this way, if the smallest face that can be detected is set to 48 × 48, the

largest face that can be detected will be larger than 1536 × 1536, which has met most actual requirements. Second, bigger

detection windows can achieve higher classification accuracy without extra computations. Compared with most methods

that apply the same template on scaled images, our higher-level branch represents a deeper network flow and can naturally

find bigger faces well. Third, the architecture of our network is ultra-lightweight. Except the first branch, each of the others

just consists of two convolutional layers and one PReLU [7] activation layer. Although the network architecture is simple, its

performance is still satisfying, since these network branches equivalently become deeper and deeper. 

With PPN, another two networks named RNet-24 and RNet-48 are added to build our three-stage cascaded face detector

as shown in Fig. 2 . RNet-24 and RNet-48 respectively take 24 × 24 and 48 × 48 images as inputs. A bounding box regression

module is also added into these two networks to adjust the face position. Although our RNet-24 and RNet-48 have similar

structures and functions to the RNet and ONet in MTCNN [46] , our models perform much faster by abandoning the use of

pooling layers and increasing convolutional strides as much as possible. The performance of our face detector is evaluated

on face detection benchmarks FDDB [11] and PASCAL Face [39] , which reports a 93.8% accuracy with 500 false positives

on FDDB, an average precision (AP) of 93.24% on PASCAL Face and 79.5% on WIDER FACE. As for the detection speed, we
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successfully achieve 60 FPS with VGA images in Intel I5 CPU. The accuracy and recall are comparable to state-of-arts while

the runtime speed far exceeds them. 

Our major contributions are in three folds: (1) a novel pyramid network named PPN is proposed to quickly generate high

performance multi-scale face proposals from a single input image. (2) two efficient networks named RNet-24 and RNet-48

are introduced to complete our cascaded detector, which achieves a 60-FPS speed with VGA images in resource-limited

i5 CPU while preserving comparable accuracy with state-of-the-arts. (3) a detailed analysis of the role of bounding box

regression in a face detector is given in experimental section. 

The rest of paper is structured as follows. Section 2 introduces related works. Section 3 describes the proposed method

in detail. Section 4 introduces the network design principles and training strategies. Section 5 verifies the effectiveness on

public datasets. Section 6 concludes this paper. 

2. Related work 

Before the rise of deep learning, Viola-Jones face detector [36,37] has promoted the development of face detection. It

adopted a cascaded adaboost classifier with haar-like features and converted a classifier to a detector by sliding windows

on multi-scale images. Afterwards, a large amount of researchers paid attention to multi-view face detection and variations-

robust face detection by developing discriminative features or classifiers [1,18,20,26,34] . DCNN has been rapidly applied in

many fields since AlexNet [16] made great success on image recognition task. A series of DCNN based face detection methods

have dramatically boosted recall and precision. In this part, we divide these methods into four categories according to the

proposal methods being utilized. 

2.1. Sliding window based methods 

Sliding window is the most direct way to convert a binary classifier to a detector. The basic idea is sliding a detection

window across the entire image and evaluating a face model at every location. Many DCNN based face detection methods

consider DCNN as a combination of feature extractor and classifier. They detect multi-scale faces by sliding windows on

an image pyramid. Deep Dense Face Detector (DDFD) [5] proposed a single model to find faces in various orientations. It

is mainly because deep features learned from a large number of samples are more robust to face poses and orientations

than traditional hand-crafted features. Convolutional Channel Features (CCF) [40] integrated DCNN features and boosting

forest model together. Instead of sliding on each scaled image one by one, they put images with different scales into one

large image for feature extraction. Ranjan et al. [29] also built an image pyramid and extracted deep pyramidal features.

Deformable part model (DPM) [6] is utilized to perform face detection. DPM defines a face as a collection of facial parts and

is robust to occlusion. Also to address the occlusion issue, Opitz et al. [27] proposed a novel loss function named grid loss,

which divided the feature map into several independent detectors. To improve the detection efficiency, Bai et al. [2] proposed

a fully convolutional network which detects faces in three-scales simultaneously by sliding detection windows on a shared

feature map. Then a coarse pyramid image is adopted to find faces in other scales. Cascade network is also widely adopted

to increase detection speed, since it can reject most of background regions with small cost in early stages. CascadeCNN

[17] trained a cascaded face detector in three stages. The first stage is a mini network to quickly generate face proposals

by sliding windows on multi-scale images. They also trained another three networks to regress bounding box positions.

Similarly, MTCNN [46] trained three networks including face classification, bounding box regression and facial landmarks

location simultaneously. Their multi-task model greatly enhanced the performance of face detection. 

2.2. Selective search based methods 

Selective Search [35] is used to generate category-independent proposals in object detection. Proposals are detected by

computing hierarchical grouping of similar regions based on color, texture, size and shape compatibility. Chu et al. [4] uti-

lized selective search to find candidate face regions in cartoons and refined face regions with DCNN. Faceness [41] trained

five models to detect hair, eye, nose, mouth and beard separately. Then a modified selective search was used to generate

face candidates based on these five facial parts’ response maps. Although Selective Search is designed to be fast maintaining

high recall, it is not appropriate for face detection. Because it produces quantities of useless candidate windows and tends

to miss partially occluded faces. 

2.3. Region proposal network based methods 

Region Proposal Network (RPN) is first introduced in Faster R-CNN [30] to generate multi-scale proposals at one time. The

classification layer in RPN outputs the confidence scores to indicate the probability of predesigned anchor boxes containing

objects. The regression layer in RPN outputs the corresponding bounding box offsets. Faster R-CNN was originally designed

to detect multi-class objects. Jiang et.al [13] applied it to face detection task and achieved great performance enhancements.

However, Faster R-CNN needs another model to refine proposals from RPN, which causes significant gap between them. To

achieve end-to-end optimization, Qin et al. [28] trained RPN and cascaded DCNN jointly to improve the quality of proposals.

DeepIR [33] further improved the performance of Faster R-CNN for face detection, serval effective strategies including feature
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concatenation, multi-scale training are added to DeepIR. To further enhance the robustness while dealing with extreme

situations, Wan et al. [38] improved Faster R-CNN face detection models with a boosting strategy which subsequently finding

hard negative samples. 

2.4. Dense proposal network based methods 

Unlike Faster R-CNN uses an extra network to refine proposals from RPN. DenseBox [10] detects faces of any size with

a single input image and a single DCNN model. It utilized a fully convolutional network to produce a dense proposal map,

where each pixel predicts a bounding box with a confidence score. To make face localization more accurate, UnitBox [44] re-

placed the � 2 loss in DenseBox with a novel Intersection over Union (IoU) loss function to regress the bounding box. To

improve the robustness of scale variation, SSD [22] found objects of various sizes from multiple feature maps with different

resolution. Feature Pyramid Network (FPN) [21] further improved SSD by building a feature pyramid with lateral connections.

Although these methods are scale-invariant, they usually fail to find tiny faces. To address this issue, Hu et al. [9] proposed

a deep foveal descriptor to capture both context and resolution features, then multi-scale feature templates were performed

on multi-scale images to find faces with a wide range of scales. 

Although many end-to-end methods [10,13,28,33,38,44] can detect faces of any size on a single input image, they are

much slower than some sliding windows and cascade based methods [14,17,46] . Because the former methods always need

wider and deeper networks to capture rich features, such as VGGNet [31] and ResNet [8] etc. In contrast, the latter cascade

methods can reject most of background regions with few computations and achieve real-time speed. 

3. Our method 

This section introduces our fast three-stage cascaded face detector. The overall pipeline is shown in Fig. 2 . The first stage

is the Proposal Pyramid Network (PPN) to generate multi-scale face proposals. The second stage named RNet-24 and the

third stage named RNet-48 are both dual-task networks, which are used to refine proposals from PPN and predict offsets of

corresponding bounding boxes. In the view of balancing speed and accuracy, we adopt three stages for our detector. More

stages lead to higher accuracy while fewer stages make detection faster. Most face detection methods based on cascaded

networks have three steps [14,17,46] . For fair comparison, we adapt the same configuration. 

3.1. Proposal pyramid networks 

PPN is a fully-convolutional network (FCN) with 11 branches, consisting of convolutional layers, PReLU [7] activation

layers and Softmax normalization layers. FCN can be trained with fixed-size images and tested with images of arbitrary

size. Taking Fig. 3 as an example, the network on the top is the first branch of our PPN. The first convolutional layer has a

stride of 2 and the remaining three have the default stride of 1. This network is trained using fixed 8 × 8 × 3 images. During

the testing phase, the size of input images and output feature maps are: 

Input := M × N × 3 , (M ≥ 8 , N ≥ 8) 

Out put := 

⌊ (
M − 8 

2 

+ 1 

)⌋ 

×
⌊ (

N − 8 

2 

+ 1 

)⌋ 

× 2 

(1)

Each pixel on this output feature map represents the probability of containing a face within an 8 × 8 detection window on

the input image. Actually, the process described above is equivalent to sliding a 8 × 8 window on the input image with a

stride of 2. 

Different from methods performing FCN on image pyramid for multi-scale face detection, our PPN with 11 branches

generates face proposals with 11 different scales from a single input image. Each branch is equivalent to sliding a de-

tection window of different size on input image. Window size K ( i ) and sliding stride S ( i ) of each branch are defined in

Eq. (2) , where i is the serial number of each branch. Fig. 4 illustrates the specific configurations of our PPN, where Num-

ber × Height × Width × Channel indicates convolutional kernels and the red color indicates convolutional layers with a stride

of 2. All convolutional layers are followed by PReLU layer except the last layer of each branch. Each branch is ended with a

softmax layer to produce normalized probability. 

K(i ) = 

{
8 × 2 

(i −1) / 2 , i ∈ [1 , 3 , 5 , 7 , 9 , 11] 

12 × 2 

i/ 2 −1 , i ∈ [2 , 4 , 6 , 8 , 10] 

S(i ) = 

{
2 

(i +1) / 2 , i ∈ [1 , 3 , 5 , 7 , 9 , 11] 

2 

i/ 2 , i ∈ [2 , 4 , 6 , 8 , 10] 
(2)

More branches represent a larger range of face sizes can be detected, however, the number of branches is restrained by

training data. If the 12th branch is added to PPN, we need to prepare sufficient 512 × 512 training images. However, most

labeled faces in WIDER FACE [42] are much smaller than 512 × 512. Besides, we think 11 branches are enough. Suppose the

smallest face that can be detected is 48 × 48, the largest would be 1536 × 1536 which has met most actual requirements.
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Fig. 3. FCN takes an image of any size as input. The FCN shown above trained with fixed 8 × 8 × 3 images is the first branch of our PPN. The below 

illustrates that if an input image is larger than 8 × 8, the process of running this FCN is equivalent to sliding an 8 × 8 window with a stride of 2. 

Table 1 

Test classification accuracies of the first six branches in PPN. 

branch1 branch2 branch3 branch4 branch5 branch6 

Accuracy 92.4% 94.0% 95.1% 95.2% 94.9% 94.5% 

 

 

 

 

 

 

 

 

 

 

More specifically, given a 6 M × 6 N × 3 color image, it is scaled 6 times firstly and fed into the pyramid network. Then each

branch will generate a probability map with following size: 

Out put := 

⌊(
M − K(i ) 

S(i ) 
+ 1 

)⌋
×

⌊(
N − K(i ) 

S(i ) 
+ 1 

)⌋
× 2 (3) 

Each pixel p ( m, n ) on i th output feature map corresponds to a square area on input image: 

x = m ∗ S(i ) ; y = n ∗ S(i ) ; w = K(i ) ; h = K(i ) ; (4)

where ( x, y ) is the top left corner of square area, w or h is the length of square’s side. 

Fig. 4 shows that higher-level branches take inputs from lower-level branches, which means higher-level branch would

have stronger classification ability. The first six branches are trained with the same training images, and the test classifica-

tion accuracies on the same testing set are shown in Table 1 . The classification accuracies firstly increase and then descend

with the increase of branch number. There are two main reasons to explain this phenomenon. First, higher-level branches

have deeper network architecture for better classification. Second, overfitting is inevitable after training with the same im-

age data for several times. The evidence is that the gap between training accuracy and testing accuracy keeps growing. Yet

despite all that, the accuracies of the higher-level branches are all obviously higher than the first branch. This phenomenon

also explains why we can get faster and better performance than MTCNN [46] while each of our branches is smaller than

PNet in MTCNN. 
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256 Conv11_1 Conv11_2
24x3x3x24 2x2x2x24

192 Conv10_1 Conv10_2
24x2x2x24 2x3x3x24

24 Conv4_1 Conv4_2
24x2x2x24 2x3x3x24

16 Conv3_1 Conv3_2
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...

Fig. 4. The specific configuration of PPN. The mathematical expressions indicate the size of convolution kernels. The red color indicates the corresponding 

convolutional layer has the stride of 2 and the others have a default stride of 1. All convolutional layers are followed by PReLU layer except the last one in 

each branch. And each branch is ended with a softmax layer. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 5. The architecture of RNet-24 and RNet-48. “Conv” means a convolutional layer, “FC” represents a fully connected layer. All convolutional layers and 

fully connected layers are followed by PReLU layer except the output layers. 

 

 

 

3.2. RNet-24 and RNet-48 

The RNet-24 and RNet-48 both are dual-task networks to refine proposals from PPN. Their network architecture are

shown in Fig. 5 . One of our tasks is binary classification, the other is bounding box regression. We regress relative offsets of

bounding boxes instead of absolute coordinates. Offsets are denoted by [ �l , �t , �r , �b ]: 

w 

g = x g r − x g 
l 
; h 

g = y g 
b 
− y g t 

�l = (x p 
l 

− x g 
l 
) /w 

g ; �t = (y p t − y g t ) /h 

g ;
�r = (x p r − x g r ) /w 

g ; �b = (y p − y g ) /h 

g ;
(5)
b b 
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Table 2 

Comparison of size and speed with RNet and ONet in MTCNN 

respectively. 

CaffeModel Size 10 0 0x Forward Propagation 

RNet-24 379 K 228 ms 

RNet [46] 399 K 736 ms 

RNet-48 905 K 824 ms 

ONet [46] 1522 K 3825 ms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where [(x 
p 

l 
, y 

p 
t ) , (x 

p 
r , y 

p 

b 
)] denote the top left coordinates and bottom right coordinates of the proposal box respectively,

[(x 
g 

l 
, y 

g 
t ) , (x 

g 
r , y 

g 

b 
)] denote the top left coordinates and bottom right coordinates of the ground truth box respectively. 

The final loss function contains two parts, one is the softmax loss for classification and the other is a restricted L 2

distance loss for regression. A weight factor α is used to balance these two losses. Since classification is the major task, α
is set to 0.5 in our experiments. 

Loss = L cls + αL reg (6) 

Different from general Euclidean distance loss for regression, a restricted L 2 loss described in Eq. (7) is adopted. There is

no definitive principle to accurately label face bounding boxes, which means the ground truth labels for regression are not

completely credible. So, we ignore minor loss and only optimize the loss greater than a threshold σ . 

L reg = 

∑ 

i ∈ [ l,t,r,b ] 

1 

2 

H i ‖ �i − y i ‖ 

2 

H i = 

{
0 i f ‖ �i − y i ‖ 

2 < σ
1 elsewise 

. (7) 

where y i , i ∈ [ l, t, r, b ] is the network prediction of bounding box offset. 

4. Network designing and training 

4.1. Network designing 

The network designing aims to improve speed while maintaining high accuracy. For the first stage PPN, all branches are

designed to be lightweight. In particular, each of the latter 10 branches in PPN has only two convolutional layers and one

PReLU layer. Even so, the overall performance is guaranteed. Because higher-level branches with deeper architecture have

stronger classification ability. 

In order to accelerate the inference speed of RNet-24 and RNet-48 as much as possible, we increase strides of con-

volutional layers and abandon using pooling layers (Max pooling or Average pooling) to realize downsampling operations

inspired by Springenberg et al. [32] . We use im2col [3] to simplify complex convolution to matrix-matrix multiplication.

Even so, a convolutional layer still costs more time than a fully connected layer with the same amount of parameters. There

are two main reasons. Firstly, im2col takes extra time to rearrange image blocks into columns and merge these column

vectors into one matrix. Secondly, the large matrix generated from im2col further increases the computational complexity

of matrix multiplication. Increasing convolutional stride can reduce both stacking frequency in im2col and computational

complexity in matrix multiplication. To verify the acceleration effect, we compare our models with the RNet and ONet in

MTCNN [46] , which is also a three-stage cascaded face detector, whose RNet and ONet are equivalent to our RNet-24 and

RNet-48 respectively. Results are shown in Table 2 . 

4.2. Training dataset 

The public datasets used to train our three-stage cascade face detector are WIDER FACE [42] and AFLW [15] . WIDER FACE

contains 32,203 images with 393,703 labeled faces, most of these faces have extreme variations in scale, pose, illumination,

and occlusion, as shown in Fig. 6 . However, since the majority of labeled faces are smaller than 48 × 48, WIDER FACE fails

to support a complete training of PPN. Hence AFLW is introduced to supplement positive samples during training high-level

branches. AFLW consists of 25,993 labeled faces in 21,997 images. More than 80 percent of labeled faces in AFLW are larger

than 128 × 128. Note that labeled bounding boxes in WIDER FACE are rectangles but squares in AFLW as shown in Fig. 6 . So

we only use WIDER FACE to train RNet-24 and RNet-48 which both have the bounding box regression task. 

4.3. Training strategies 

Caffe [12] is used to train our three-stage network. The weights initialization method is Xavier and the network is op-

timized by SGD with a momentum of 0.9. The batch size for all training stages is 256 and the ratio of positive samples to

negative samples is 1:3. 
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Fig. 6. Some face examples in WIDER FACE [42] and AFLW [15] datasets. 

Table 3 

There are three sizes of training images for PPN. “source size” means the 

minimum size of valid training samples. “target size” means the size that all 

training images will be firstly resized to. 

branch ID target size source size dataset 

branch1-branch6 48 ≥ 32 WIDER FACE 

branch7-branch9 128 ≥ 64 WIDER FACE + AFLW 

branch10-branch11 256 ≥ 128 WIDER FACE + AFLW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PPN: PPN has 11 branches which are trained one by one. Higher-level branches need larger training images. But most

labeled faces in WIDER FACE are too small. To increase the amount of valid positive samples as much as possible, three

sizes of training images are cropped and resized from WIDER FACE and AFLW as shown in Table 3 . Take the first row in

Table 3 as an example to make clear how we prepare training data. Image patches with IoU overlapping with ground truth

bounding boxes below 0.25 are assigned to negative samples. Image patches larger than 32 × 32 with IoU overlapping with

ground truth bounding boxes over 0.5 are assigned to positive samples. The rest will be ignored. All valid image patches are

cropped and resized to 48 × 48 for training branches 1 to 6. These images are further resized to 8 × 8 without antialiasing

to train the branch 1 with a dynamic learning rate: 

l = l b 

(
1 − i 

i max 

)p 

. (8)

where l b is the initial learning rate, i is the number of iterations, i max is the maximum number of iterations, and p is a

power factor. In our experiments, [ l b , i max , p ] are set to [0.001, 6.4 × 10 5 , 2]. Meanwhile we adopt early stopping to choose

final models. 

The shared layers are fixed after training branch 1. Then images are resized to 12 × 12 to train branch 2. The rest branches

are trained sequentially in the same way. 

RNet-24: Firstly, PPN is used to detect faces on WIDER FACE [42] . Then all detected faces are divided into positive set

or negative set based on the IoU overlapping with ground truth bounding boxes. Besides, bounding box offsets of positives

samples are computed as Eq. (5) . Since the initial loss of bounding box regression is much larger than the initial loss of

classification, the previous strategy to adjust learning rate is improper. In order to achieve faster convergence, we pre-train

this network with a novel strategy. The learning rate is initially set to 10 −8 and magnified 10 times every 1K iterations until

5K iterations. This pre-trained model is retrained with the strategy used in PPN training. 

RNet-48: Training strategies of RNet-48 is similar to RNet-24. The only difference is that samples passed through PPN

and RNet-24 need to be corrected with the predicted bounding box offsets. 

5. Experiments 

In this section, we first evaluate our proposed PPN face detector on three challenging face detection benchmarks (FDDB

[11] , PASCAL Face [39] and WIDEF FACE [42] ) to verify its performance. Then, we conduct an ablation study. Finally, we show

the runtime effectiveness and conclude some interesting observations. 

5.1. Evaluation on FDDB 

FDDB [11] is a popular face detection benchmark. 5171 faces are labelled in 2845 images with complicated variations of

scale, pose and occlusion. The authors also provide a standard evaluation tool, which considers a detection to be positive

if the ratio of the intersection of detected face region with annotated face region is greater than 0.5. Besides, Receiver

Operating Characteristic (ROC) curve is shown in Fig. 7 by plotting the number of false positives against the true positive
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Fig. 7. ROC curves of our face detector on FDDB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rate (TPR) at various threshold settings. It is obvious that our detector achieves comparable accuracy with state-of-the-arts.

Though some methods achieve better accuracies, they all use huge models and are extremely slow. 

Fig. 8 shows some detection examples on FDDB. It demonstrates that our face detector is robust to large occlusion and

severe illumination, etc. Face rectangle positions become more accurate with bounding box regression. 

5.2. Evaluation on PASCAL face 

We further conduct experiments on PASCAL Face [39] benchmark which consists of 1341 faces in 851 images. As shown

in Fig. 9 , our face detector achieves an average precision of 93.24%, which is obviously better than Faceness [41] , MTCNN

[46] and HeadHunter [25] , etc. 

5.3. Evaluation on WIDER FACE 

To evaluate the capacity of our PPN on the practical deployment in the wild, we further conduct experiments on WIDER

FACE [42] . We compare our PPN with five fast face detection models based on multi-stage and/or multiscale scheme, in-

cluding two baseline models (two-stage CNN [42] and multi-scale cascaded CNN [42] ), a two-stage model (Faceness [41] ),

a three-stage model (MTCNN [46] ) and a one-stage multiscale model (ScaleFace [43] ). The result is shown in Fig. 10 , which

demonstrates several observations. First, our PPN achieves the fastest detection speed of 60 FPS beyond its light-weight

size, showing that it could facilitate practical deployment (e.g., combining with face recognition model to identify faces in

the wild). Second, PPN gives a lower precision than ScaleFace and MTCNN since only faces larger than a certain size (e.g.,

48 × 48) in WIDER FACE are used to train RNet-24 and RNet-48, implying that the first two stages could be further improved

by training with more satisfied data. 

On WIDER FACE dataset, we also check the impact of various parameter settings on the detection precision. The first

parameter is the smallest face size, which is used to control the range of faces that could be detected. In our experiment,

we achieve the average precision of 0.781, 0.783, 0.785 and 0.774 when the smallest face size is set to 20, 30, 35 and 40,

respectively. It implies that the smallest face size is important for a specified scenario and should be modified accordingly.

For example, the best average precision is achieved when the smallest face size is 35 for WIDER FACE, since many face

images in the hard subset are captured from crowd scenarios and have relative small face sizes. The thresholds in three

stages can also affect average precision, as shown in Fig. 11 . The proposal network in the first stage is used to improve

the recall while balancing the false detections, thus smaller score factor will let more face candidates pass through. When

the score factor increases to a large value, the recall is very low so that no faces can be detected, as shown in the left of
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Fig. 8. Detection examples on the FDDB with our face detector. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 . In RNet-24 and RNet-48, the thresholds are used to accept more confident faces. A small threshold causes high false

positive rate, while a large one decreases false negatives, thus an appropriate threshold is crucial. From the middle and right

of Fig. 11 , we can find the average precision is stable when the threshold is in a certain range, implying the robustness of

our proposed PPN model. 

5.4. Evaluation on runtime speed 

DCNN based face detectors have greatly improved the recall and accuracy, but most of them are time-consuming. For

many practical applications, speed is the priority and low-quality faces are useless. We compare the speed of our detector

with many other state-of-the-arts methods. Table 4 shows that our runtime speed significantly exceeds the others. With a

single CPU core and a single thread, we can process 60 VGA images per second when the smallest face that can be detected

is set to 48 × 48. 

Compared with MTCNN [46] and CascadeCNN [17] which also use cascaded detection framework, our performance and

speed are both superior to them. As for xiaomi [38] , DeepIR [33] , RSA [23] , etc, although their accuracies are slightly higher

than ours, their detection speeds are much slower. VGGNet [31] and ResNet [8] in their networks both have a huge number

of parameters and need nearly 200 ms for one forward propagation on CPU. So, these face detectors using VGGNet or ResNet

are too slow for real-time applications. 
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Fig. 9. Comparison of the precision-recall curves on PASCAL Face. 
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Table 4 

Runtime comparisons with state-of-the-art methods. 

Methods Speed Configuration Method category 

Faceness [41] 20 FPS TITAN GPU Modified Selective Search 

UnitBox [44] < 6 FPS CPU (VGG [31] ) 

HR [9] 3.1 FPS GPU (ResNet [8] ) Dense Proposal 

SFD [47] 36 FPS TITAN X GPU Network 

Qin et al. [28] 10 FPS CPU 

Faster R-CNN [13] < 6 FPS CPU (VGG [31] ) 

DeepIR [33] < 6 FPS CPU (VGG [31] ) Region Proposal 

xiaomi [38] < 8 FPS CPU (ResNet [8] ) Network 

ScaleFace [43] < 8 FPS GPU (ResNet [8] ) 

RSA [23] < 8 FPS GPU (ResNet [8] ) 

DP2MFD [29] 0.285 FPS Tesla K20 GPU 

Conv3D [19] < 6 FPS CPU (VGG [31] ) 

MTCNN [46] 15 FPS CPU Sliding Window 

CascadeCNN [17] 14 FPS CPU 

Ours 60 FPS I5 CPU 

173 FPS GTX 1080 Ti 

Table 5 

RNet-24 training and testing results with or without bounding box regression. 

With bounding box regression? Train loss Train acc Test loss Test acc 

No 0.1045 97.3% 0.1497 94.5% 

Yes 0.1126 96.4% 0.1357 94.9% 

Fig. 12. Bounding box regression makes NMS more efficient. (a) Is an input image, (b) illustrates the output of RNet-24 without bounding box correction, 

and (c) shows the output of RNet-24 with bounding box correction. 

 

 

 

 

 

 

 

 

 

 

 

5.5. Bounding box regression 

RNet-24 and RNet-48 are both dual-task networks, dealing with bounding box regression and binary classification at the

same time. We think bounding box regression produces three key benefits: 

1) Bounding box regression can be regarded as a regularizator to the classification task. Based on our experimental results,

the binary classification is easier to converge but more likely to be overfitting than the regression. Bounding box regres-

sion can effectively avoid overfitting by adding some gradient “noise”. To verify it, we train another network with the

same architecture without regression task. Results are shown in Table 5 . Obviously, the gap between training and testing

narrows with bounding box regression, which means the generalization ability gets enhanced. 

2) Bounding box regression improves the classification accuracy of positive samples. After bounding box correction, the face

position becomes more accurate and the detection window will have a higher probability to be classified correctly. 

3) Bounding box regression makes non-maximum suppression (NMS) more efficient. NMS is used to merge overlapping

bounding boxes, which continuously selects the bounding box with maximum detection score and suppresses its neigh-

bor bounding boxes with a predesigned IoU threshold. As shown in Fig. 12 , bounding box regression makes candidate

boxes more concentrated and suppresses useless boxes after NMS. We further prove it by counting the number of boxes

after NMS with or without bounding box regression. The results in Table 6 show that NMS reduces more candidate boxes
with bounding box correction, which also means the computation of RNet-48 is reduced. 
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Table 6 

The number of bounding boxes after NMS with or without bounding box regression 

on FDDB [11] . 

With bounding box regression Without bounding box regression 

RNet-24 25762 35695 

RNet-48 6139 6481 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

This paper presented a novel convolutional neural network called PPN to generate face proposals. Compared with sliding

detection windows on pyramid images, PPN generates multi-scale face proposals with a single input image, which is faster

and more accurate. By cascading PPN with another two dual-task networks, our three-stage cascaded face detector achieves

comparable performance on FDDB, PASCAL Face and WIDER FACE benchmarks. Particularly, our detection speed reaches 60

FPS with VGA images in i5 CPU, significantly exceeds previous methods. Our future work will explore how to further reduce

the amount of proposals with satisfied recall and accelerate the networks without performance degradation. 
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