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a b s t r a c t 

Numerous recent face detectors based on convolutional neural networks (CNNs) have significantly im- 

proved the detection performance. However, CNNs usually have a huge number of parameters which lead 

to very low detection speeds. To address this issue, this paper proposes a fast CNNs cascade face detector 

with multi-task learning and network acceleration techniques. In particular, the first stage of the detector 

is an elaborately designed fully convolutional network with a novel pyramid architecture, which can gen- 

erate multi-scale face proposals efficiently with no more than twice image resizing operations. Several 

network compression and acceleration techniques including multi-layer merging and knowledge distill- 

ing are adopted to further improve inference speed. In addition, online and offline hard sample mining 

are jointly utilized to further strengthen the power of networks. The experimental results on challenging 

FDDB show that the proposed face detector is comparable in performance with the-state-of-arts while 

the speed reaches astonishing 165 fps on Titan GPU. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Face detection is the foundation of many face-related com-

puter vision tasks, such as face tracking [1] , facial landmarks de-

tection [2] and face recognition [3] . An excellent face detection

method should not only be robust for variations in illumination,

facial expression and occlusion, etc., but also be fast. In fact, speed

is the biggest bottleneck which hinders the practical deployment

of face detectors. Since the tremendous success of the convolu-

tional neural networks (CNNs), many CNNs-based face detectors

[4–9] have significantly improved the detection performance in the

wild. However, CNNs generally have a huge number of parameters

which cause most of these detectors are very far from realtime. 

To address the above issue, this paper proposes a three-stage

CNNs cascaded face detector as shown in Fig. 1 . Cascaded detection

is a relatively fast detection framework which can quickly reject

most of the background regions in the early stages. However, to de-

tect faces at multi scales, previous cascaded methods [10–12] must

resize the input image to different scales to build an image pyra-

mid, which is time consuming. To accelerate this process, our first

stage network is carefully designed with a novel pyramid architec-

ture as shown in Fig. 2 . It is a fully convolutional network with six

branches and can generate multi-scale proposals fast with no more
∗ Corresponding author. 
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han twice image resizing operations. Concretely, the first network

ranch can determine whether a 12 × 12 detection window con-

ains a face. The second branch can process 24 × 24 windows and

o on. This special pyramid network mainly has following three ad-

antages. 

(1) Generating multi-scale face proposals only needs to resize

mage once or twice. The original image and the scaled image

ith a factor 
√ 

2 / 2 are fed to the multi-branch network in turn.

hen the whole image pyramid space can be completely traversed

y sliding detection windows with the size of 12 
√ 

2 
i × 12 

√ 

2 
i 
, i ∈

0 , 1 , . . . , 11] . 

(2) The network parameters are shared to avoid repeating com-

utation. As shown in Fig. 2 , the input of high-level branch is the

ntermediate output of low-level branch, which means high-level

ranches can be more lightweight with the same classification per-

ormance. 

(3) Bigger detection windows can achieve higher classification

ccuracy than smaller windows. It’s mainly because a higher-level

ranch equivalently has a deeper network architecture. In previ-

us methods, an image should be zoomed out and then fed to the

ame network to detect bigger faces. It indicates the network will

old the same classification performance for both small and big

indows. 

After generating face proposals from the pyramid network,

tage2 and Stage3 are used to refine these proposals in turn. These

wo stages are both dual-task networks, which combine binary

https://doi.org/10.1016/j.patrec.2018.05.024
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Fig. 1. Pipeline of our three-stage CNNs cascaded face detector. The original image and the scaled image with a factor 
√ 

2 / 2 are fed into the stage1 pyramid network to 

generate multi-scale face proposals. After that, stage2 and stage3 are used to refine these proposals in turn. 

Fig. 2. The architecture of our pyramid network which has totally six branches. The last three branches have the same architecture as the branch3. The “Conv” means a 

convolutional layer, the expression under it denotes the kernel size. The red “Conv” indicates the convolutional layer has a stride of 2. Each convolutional layer is followed 

by a ReLU activation function (except the output layer) and each network branch is ended with a binary SoftMax classifier. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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lassification with bounding box regression and facial landmarks

egression respectively to make face location more accurate. 

On the other hand, all our three networks are designed and

rained with full consideration of computational effectiveness and

ccuracy performance. The implementation strategies consist of

wo parts. One is how to accelerate a model and the other is how

o promote a small model. For the first aspect, all pooling layers

re replaced with increasing convolutional strides to realize fea-

ure down-sampling and all batch normalization (BN) [13] layers

re merged with their neighbor convolutional layers after training.

or the second aspect, there are four techniques adopted: (1) ex-

ensive data augmentations including rotating, translating, scaling

nd Gaussian blurring; (2) online and offline hard samples mining;

3) the knowledge distilling [14] which can produce a better small

odel from a large one; (4) a novel multi-layer merging method

hich contributes to training a small model. 

The major contributions of this work are the following: (1) We

ropose a novel pyramid network which can generate multi-scale

ace proposals efficiently with no more than twice image resiz-

ng operations. (2) We combine online and offline hard samples

ining to enhance the power of networks. (3) We introduce the

nowledge distilling and multi-layer merging to improve the per-

ormance of small models. (4) We evaluate our fast face detector

n the public benchmark FDDB [15] and achieve comparable re-

ults with the state-of-the-arts while the speed reaches astonish-

ng 165 fps on Titan GPU. 

i  
The rest of this paper is organized as follows. Section 2 reviews

elated work, especially the CNNs-based. Section 3 details the pro-

osed fast face detection framework. Section 4 shows the experi-

ental results on public dataset. Finally, Section 5 provides a brief

ummary of this paper. 

. Related work 

For the past two decades, face detection has always been an

mportant issue in the field of computer vision. All face detection

ethods can be roughly divided into two categories: traditional

achine learning based and CNNs based. 

As the most typical traditional method, Viola and Jones

16] built a cascaded detector with Haar features, which could de-

ect front faces at real-time speed. Following this work, many re-

earchers improved the Viola and Jones detector by using advanced

eatures like LBP [17] , HOG [18] and SURF [19] , or adopting a divid-

ng strategy to assemble several models for multi-view face detec-

ion [20–22] . Another typical traditional method is the deformable

art model (DPM) [23] , which defined a face as a collection of fa-

ial parts. DPM-based methods [24,25] are robust to partially oc-

luded faces but computationally complex. 

Since the enormous success on the ImageNet Large Scale Vi-

ual Recognition Challenge (ILSVRC) 2012, CNNs have been applied

n a variety of research fields [26,27] . Especially, on the challeng-

ng Face Detection Data Set and Benchmark (FDDB) [15] , public
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Table 1 

Comparison of model size, speed and validation accuracy of our six branches 

and PNet [10] . 

Model Size 10 0 0 × Forward propagation Validation accuracy 

PNet 27.5Kb 0.044S 0.950 

Branch1 17.7Kb 0.019S 0.952 

Branch2 9.7Kb 0.017S 0.957 

Branch3 8.8Kb 0.015S 0.962 

Branch4 8.2Kb 0.014S 0.965 

Branch5 8.2Kb 0.014S 0.966 

Branch6 8.2Kb 0.014S 0.960 
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face detection methods with top performance are almost entirely

CNNs-based. Benefited from deep features with stronger represen-

tation power, DDFD [4] can detect multi-view faces using a sin-

gle deep model. To deal with severe occlusion and complicated

pose variation, some methods combine CNNs with DPM. DP2MFD

[28] trained a DPM with pyramid deep features and introduced a

normalization layer to handle faces with different size well. Face-

ness [6] had similarities with the DPM. It used five CNNs models

to obtain facial parts responses and then scored a candidate face

with the responses spatial structure and arrangement. Besides, to

locate faces of varied scales and shapes more accurately, UnitBox

[9] introduced an Intersection over Union (IoU) loss to predict four

offsets of bounding box jointly. 

Recently, multi-task deep learning becomes increasingly pop-

ular, which uses a variety of ancillary tasks to improve the per-

formance of the main task. As the most common auxiliary task

for face detection, bounding box regression [7,9–11,29] can im-

prove the location accuracy. In addition, MTCNN [10] proposed a

cascaded face detector by integrating face classification, bounding

box regression and facial landmarks detection. Hyperface [7] fur-

ther fused face detection, landmarks localization, pose estimation

and gender recognition into one model, which generated surpris-

ing performance on all four tasks. 

However, CNNs models generally have heavy computation com-

plexity which severely limit their applications especially on mobile

platforms. To address this issue, Jiang et.al [29] trained a Faster R-

CNN [30] model for fast face detection. Faster R-CNN is a popular

end-to-end object detection framework. It mainly consists of two

modules: one is a fully convolutional network for generating object

proposals, the other then refines the proposals. DeepIR [31] im-

proved the R-CNN framework by combining a number of tricks in-

cluding feature concatenation, multi-scale training, model pretrain-

ing and so on. R-CNN accelerates the detection speed by avoid-

ing sliding window on an image pyramid. However, it still can-

not realize real-time speed because this end-to-end detector needs

deeper or wider network to hold performance. Different from R-

CNN-based face detectors, cascaded detectors have more advan-

tages in speed. CascadeCNN [11] proposed a CNNs cascade face

detector whose speed reached 100 FPS on Titan GPU. Kalinovsky

& Spitsyn [12] dramatically improved the speed by implement-

ing SSE/AVX/AVX2 instruction sets on smaller models but the per-

formance decrease significantly. MTCNN [10] also trained a three-

stage cascaded model using multi-task learning, which substan-

tially increased the performance while maintaining the same speed

as CascadeCNN [11] . 

On the other hand, mining hard samples is another effective

way to strengthen the power of a detector, which mainly includes

online and offline hard mining. Wan et.al [32] adopted a boost-

ing strategy to mine hard negative samples and retrain the model

several times. Most cascaded methods [10–12] applied offline hard

mining by training present stage with hard samples collected from

previous stages. MTCNN [10] proposed a new online hard sample

mining strategy which ignores 30% samples with minimum losses

during the backward propagation. 

3. Our method 

Our detector aims to achieve both real-time speed and excel-

lent performance. Next, we will give the technical details to realize

these two targets. Section 3.1 introduces the pyramid network for

generating face proposals. Section 3.2 and Section 3.3 detail the

techniques used to accelerate and improve the networks respec-

tively. 
.1. Pyramid network for face proposals 

The pipeline of our fast face detector is shown in Fig. 1 . The

riginal image and the scaled image with a factor 
√ 

2 / 2 are fed

nto the stage1 pyramid network to generate multi-scale face pro-

osals. After that, Stage2 and Stage3 are used to refine these pro-

osals in turn. In particular, the bounding box regression in Stage2

nd the facial landmarks regression in Stage3 make face positions

ore accurate. Non-maximum suppression (NMS) is used to merge

ighly overlapped face candidates. 

Among multitudinous CNNs-based face detection methods,

ascade-based methods [10–12] are basically the fastest. Since

hey can quickly reject most of the background regions in the

arly stages. However, to detect faces with different scales, these

ethods must resize an image to different scales and slide

indows on these scaled images sequentially. Image resizing is

ime-consuming. Meanwhile, the bigger detection windows cannot

chieve higher classification accuracies than smaller windows. In

act, finding bigger faces should be easier. To solve these issues,

ur first-stage network is carefully designed with a novel pyramid

rchitecture as shown in Fig. 2 . 

The first stage is a fully convolutional network with 6 branches.

he first branch is designed for 12 × 12 sized detection windows,

hich has 5 convolutional layers and 4 ReLU activation layers in

ll. To improve the forward propagation speed, the commonly used

ooling layers are abandoned and the stride of the first convolu-

ional layer in each branch is set as 2. The second branch is de-

igned for 24 × 24 sized windows, whose input comes from the

utput of the third convolutional layer in branch1. Since this in-

ut is advanced feature rather than raw image pixel, a smaller

ranch model can be easily trained with higher classification ac-

uracy. The remaining branches can process windows with size of

8,96,192 and 384 separately. We compare the model size, infer-

nce speed and validation accuracy with the first stage model in

TCNN [10] which is a state-of-the-art CNNs cascaded face detec-

ion method. The experimental results are shown in Table 1 . And

here are a few points to be noted here. 

i) The ratio of nonface to face is 3:1 in validation set. 

ii) All validation images are larger than 384 × 384. If the image

s too small, the validation performance of high-level branches will

ecline because of the blurring problem from enlargement. 

iii) The forward propagation time is calculated on the Intel

ore(TM) i5-6500 CPU. 

It is clear that our multi-branch model performs better and

aster than PNet in MTCNN [10] . Especially, the validation accura-

ies generally keep growing with increasing branch levels. It means

igger windows can get higher classification accuracy while pre-

ious methods [10–12] just keep the same performance for both

mall and big windows. Moreover, the validation accuracy tends to

top growing and even decrease in branch6. It is mainly because

raining high-level branches lacks big faces as positive samples. 

When running detection, the original image is fed to the above

yramid network to detect faces with size 12 × 2 n , n ∈ [0 , 1 . . . 5] .
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Fig. 3. The architecture of our Stage2 and Stage3 networks, where all convolutional layers have a stride of 2. 
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Table 2 

Comparison of model size, speed and validation accuracy of our Stage2 and 

Stage3 networks to RNet and ONet in MTCNN [10] . 

Model Size 10 0 0 × Forward propagation Validation accuracy 

RNet 399Kb 0.598S 0.972 

Stage2 302Kb 0.127S 0.977 

ONet 1522Kb 2.635S 0.984 

Stage3 1165Kb 0.605S 0.988 
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his image is then resized with a scale factor 
√ 

2 / 2 to further de-

ect faces with size 12 
√ 

2 × 2 n , n ∈ [0 , 1 . . . 5] . Above all, we only

eed resize image once (if minimum face size is not 12 × 12, we

eed resize it twice) to search the whole image space. Compared

ith sliding windows on an image pyramid, our method can get

oth greater performance and faster speed. When the minimum

ace that can be detected is set to 48 × 48, then the maximum face

e can detect is larger than 2171 × 2171, which has already met

ost of practical face detection requirements. 

.2. Network acceleration 

Our network acceleration strategies mainly involve two aspects.

ne is how to accelerate a model with almost equal amount of pa-

ameters. The other is how to train a small model with satisfactory

erformance. 

Caffe [33] is used to realize our work, which performs fast con-

olution by using im2col [34] to reduce the problem to matrix-

atrix multiplication. We notice that a convolutional layer costs

ore forward propagation time than a fully-connected layer with

he same amount of parameters. It is mainly because the im2col

pends a lot of time stacking data patches into a large dense ma-

rix. To accelerate convolutional computation, all strides of convo-

utional layers in Stage2 and Stage3 networks are set to 2 as shown

n Fig. 3 . In this case, both convolutional frequency in im2col and

omputational complexity in matrix multiplication are reduced.

oreover, batch normalization (BN) [13] is introduced into our net-

orks to improve the convergence speed and model performance.

fter training, we merge a BN layer with its previous neighbor con-

olutional or fully-connected layer to reduce inference time as fol-

owing formula. 

 1 = Con v (x ) = wx + b 

 2 = BN(y 1 ) = α
y 1 − μ

σ
+ β = 

αw 

σ
x + 

αb − αμ + σβ

σ

= w 

′ 
x + b 

′ 
(1) 

here w and b are the weight and bias of a convolutional layer

espectively. μ, σ , α and β are the mean value, variance, scale

nd shift parameters of BN [13] respectively. After merging, the BN

ayer is removed and the old weight and bias are replaced with w 

′ 

nd b 
′ 
. 
Besides, we hope to further improve inference speed through

educing the model size. However, a small model usually leads to

erformance degradation. To address this issue, we employ diverse

trategies to strengthen the power of small models in Section 3.3 .

ith these above techniques, our models get significant speed im-

rovements as shown in Table 2 . 

.3. Enhance network performance 

Speed and performance usually contradict with each other. Af-

er network acceleration, we pool a variety of ideas to keep the

erformance and even improve it. 

Merge multi layers: We propose a novel method of merging

ulti layers to reduce the difficulty of training a small model and

mprove its performance. During training, our network is com-

osed of several modules. Fig. 4 shows one typical convolutional

odule, where an original single convolutional structure is decom-

osed with multi convolutional layers followed by BN layers. 

As shown in Fig. 4 , an original convolution layer is expressed as

ollowing formula. 

 = wx + b = 

n ∑ 

i =1 

αi (w 

′ 
i x + b 

′ 
i ) = 

( 

n ∑ 

i =1 

αi w 

′ 
i 

) 

x + 

( 

n ∑ 

i =1 

αi b 
′ 
i 

) 

(2)

here w 

′ 
i 

and b 
′ 
i 

are from merging i th convolutional layer and its

ollowed BN layer using formula (1) . n represents the number of

ecomposition and αi denotes a corresponding learnable impor-

ance coefficient. 

Knowledge distilling: Negative samples with some intersection

ver ground-truth faces have a big chance of being mistaken for

ositive samples. Positive samples with more background region
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Fig. 4. Merge multi layers. (a) The original single convolutional structure. (b) The 

decomposition of the structure. 
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also have a big chance of being mistaken for negative samples.

However, the common SoftMax classifier ignores the difference of

samples in the same class and toughly pushes the output proba-

bility to the hard targets 0 or 1, which is an important cause of

training difficulty with a small network. To solve this issue, knowl-

edge distilling [14] is adopted to train a small model by using the

class probabilities produced by a large model as soft targets. We

first train a dense network with classical SoftMax loss. Then the

probabilities of all training samples are computed with following

formula. 

p = 

e 
y 
′ 
1 
T 

e 
y 
′ 
0 
T + e 

y 
′ 
1 
T 

(3)

Where y 
′ 
0 

and y 
′ 
1 

are the outputs of the dense network, T is a fixed

parameter to control the soft of probability distribution. In our ex-

periments, we set it as 10. Finally, our small network is trained

with following loss function. 

L = αL sof t + (1 − α) L hard 

L sof t = −
[

p log 
e 

y 1 
T 

e 
y 0 
T + e 

y 1 
T 

+ (1 − p) log 
e 

y 0 
T 

e 
y 0 
T + e 

y 1 
T 

]
(4)

Where L hard is the classical SoftMax loss which is the cross entropy

with the correct hard labels. L soft is the cross entropy with the soft

targets. y 0 and y 1 are the outputs of present light network. α is a

weight factor. 

Hard mining: In our experiments, high training accuracy can

be achieved soon after only thousands of training batches, which

means most of training samples are easy ones and useless for im-

proving network performance. To solve this issue, we first con-

struct our large training set from hard public dataset WIDER FACE

[35] , AFLW [36] and Celeba [37] . Then both online and offline

hard samples mining are adopted. Specifically, online hard mining

[10] ignores 30% samples with minimum losses in the backward

propagation and the ratio can even be increased to 60% during the

latter of training. Offline hard mining finds error-classifying sam-

ples and retrains the model. A boosting-like strategy is also intro-

duced to train present stage network with hard samples collected

from previous stages. 
. Experiments 

We give some training details in Section 4.1 . In Section 4.2 , the

erformance and speed of our face detector are compared with the

tate-of-the-art methods on FDDB [15] . In Section 4.3 , we further

valuate the effectiveness of our multi-layers merging and knowl-

dge distilling strategies. 

.1. Model training 

Our face detector has three tasks in total. So there are three

inds of training samples for binary classification, bounding box

egression and facial landmarks location respectively. The first two

inds of samples are mainly selected from hard public dataset

IDER FACE [35] and AFLW [36] . WIDER FACE dataset consists of

93,703 faces in 32,203 images where 50% of them for testing are

ithout released bounding box ground truths. AFLW consists of

5,993 labeled faces in 21,997 images. Since there are some un-

abeled faces in some images, we manually pick out images con-

aining only one face to generate training data to avoid false neg-

tive samples. Finally, we crop faces from CelebA dataset [37] to

rain facial points location task. CelebA contains 202,599 images,

ach of them has only one face with five facial points. Although the

umber of negative samples is much larger than the other kinds of

amples, a sample ratio 3: 1 (negatives/ positives) is fixed in each

raining batch. 

For the Stage1, the branch1 network is first trained with 12 × 12

ized images. After that, its last two layers are removed and the

arameters of the remaining layers are fixed simultaneously. Then

he branch2 is added and trained with 24 × 24 sized images. By

epeating the process above, a pyramid network with six branches

s obtained. Since the blur from image magnification has negative

ffect on training process, we only choose positive samples whose

riginal size are bigger than 32, 32, 32, 64, 128 and 256 for six

ranches respectively. Unfortunately, most of the labeled faces in

IDER FACE [35] are smaller than 64 × 64, which means there are

ot enough big faces as positive training samples to release the

otential of high-level branches. It is the main reason why the

alidation accuracy tends to stop growing and even decrease in

ranch6 as shown in Table 1 . Although the Stage1 network has

ix branches, it does not cost too much time to be trained. It is

ecause that high-level branches with advanced inputs converge

aster as shown in Fig. 5 . 

For the last two stages, our training draws on diverse experi-

nces from MTCNN [10] , including how to prepare training data

or different tasks, how to control the ratio of different samples

nd how to adjust the learning weight of different tasks. 

.2. Performance and speed 

In this section, our method is compared with the state-of-the-

rts on FDDB [15] . FDDB is a widely-used face detection bench-

ark which contains 5171 faces with ellipse annotations in 2845

mages. We give the Receiver Operating Characteristic (ROC) curves

or discrete scores and continuous scores on FDDB as shown in

ig. 6 . As a result, our proposed face detector achieves comparable

ccuracy to the-state-of-arts. To show the robustness of our face

etector to occlusions, difficult poses, and low resolution and out-

f-focus faces, some detection examples on the FDDB are given in

ig. 7 . 

Although the performance of xiaomi [32] , DeepIR [31] and

aster R-CNN [29] are better than ours, they used ResNet-50 [38] ,

GG-16 and VGG-16 [39] respectively. All of these huge models are

oo slow to support real-time face detection. Besides, the continu-

us scores of xiaomi and DeepIR are much larger than ours. This

s mainly because they both conducted 10-fold-cross-validation on
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Fig. 5. Comparison of convergence rate of several branches in stage1 network. 

Table 3 

Speed comparison between our method and several state-of-the-art methods. 

Method GPU Speed 

CascadeCNN [11] Titan Black 100FPS 

MTCNN [10] Titan Black 99FPS 

Faceness [6] Titan Black 20FPS 

Faster R-CNN [29] Tesla K40c 2.6 FPS 

HyperFace [7] Titan X 0.3FPS 

Ours Titan Black 165FPS 
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Fig. 6. Comparisons on FDDB. It’s important to note that xiaomi, DeepIR and Faster 

R-CNN are all huge models and impossible for real-time face detection. 

Table 4 

The numbers of candidate faces in each detection stage on FDDB. 

Knowledge distilling Stage1 Stage2 Stage3 

With 246 K 24 K 5.8 K 

Without 299 K 28 K 6.3 K 

4

 

e  

w  

s  

T  

c  
DDB which introduces a special elliptical annotation. To give a

ore fair comparison under the continuous score evaluation, a

ew third detection stage is trained. Since FDDB has no labeled

acial landmarks, we replace the original facial landmarks location

ask with bounding box regression. Then we perform 10-fold-cross-

alidation experiments using FDDB. Our new results denoted as

Ours ∗” are shown in Fig. 6 . The significantly improved continuous

core indicates that the continuous score is greatly affected by the

ifferent annotation styles between training data and testing data. 

Except the discrete scores and continuous scores, the low time

ost is our most prominent position. We further compare our de-

ection speed with several state-of-the-art methods and the re-

ults are shown in Table 3 . The experimental results show that the

peed of our face detector obviously exceeds other CNNs-based de-

ectors. 

.3. Multi-layers merging 

To evaluate the effectiveness of our proposed multi-layer merg-

ng method, a same three-stage cascaded detector is trained with-

ut this technology. The recall rate with 500 false detections de-

lines from 0.945 to 0.933. It is clear that our merging multi-

ayers strategy can significantly improve the performance of small

odels. A convolutional or fully-connected layer is decomposed

nto five same branches in our experiments. And more decompo-

ition is not able to bring greater exaltation. It is noted that these

ve branches are initialized from gaussian distribution with zero

eans but different variances. And the learning rate of the weight

actor α in formula (2) is 10 × times as basic learning rate. 
i 
.4. Knowledge distilling 

To verify the effectiveness of the knowledge distilling strat-

gy, another face detector with the same architecture is trained

ithout knowledge distilling. Keeping the same recall rate in each

tage, the numbers of candidate faces on FDDB [15] are shown in

able 4 . Since knowledge distilling can improve networks’ classifi-

ation performance, the number of face proposals can be reduced
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Fig. 7. Detection examples on the public FDDB dataset. 
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with the same recall rate, which means the detection speed will

be improved greatly. 

5. Conclusion 

In this paper, we presented a fast CNNs cascade face detector

whose performance is comparable with the state-of-the-arts. Our

major contribution is the proposed pyramid network for quickly

generating multi-scale face proposals, which reduces the major

computational complexity in cascaded face detectors. Although our

detection speed significantly exceeds other CNNs-based face detec-

tors, generating face proposals still takes up the bulk of our de-

tection time. So, our future work will keep focusing on improving

the speed of generating face proposals by designing more efficient

proposal network. 
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